具有分数耗散和阻尼的纳维-斯托克斯方程的良好拟合度和 $$L^2$$ - 衰变估计值

Chengfeng Sun, Yuanyuan Xue, Hui Liu
{"title":"具有分数耗散和阻尼的纳维-斯托克斯方程的良好拟合度和 $$L^2$$ - 衰变估计值","authors":"Chengfeng Sun, Yuanyuan Xue, Hui Liu","doi":"10.1007/s00574-024-00390-y","DOIUrl":null,"url":null,"abstract":"<p>The generalized three dimensional Navier–Stokes equations with damping are considered. Firstly, existence and uniqueness of strong solutions in the periodic domain <span>\\({\\mathbb {T}}^{3}\\)</span> are proved for <span>\\(\\frac{1}{2}&lt;\\alpha &lt;1,~~ \\beta +1\\ge \\frac{6\\alpha }{2\\alpha -1}\\in (6,+\\infty )\\)</span>. Then, in the whole space <span>\\(R^3,\\)</span> if the critical situation <span>\\(\\beta +1= \\frac{6\\alpha }{2\\alpha -1}\\)</span> and if <span>\\(u_{0}\\in H^{1}(R^{3}) \\bigcap {\\dot{H}}^{-s}(R^{3})\\)</span> with <span>\\(s\\in [0,1/2]\\)</span>, the decay rate of solution has been established. We give proofs of these two results, based on energy estimates and a series of interpolation inequalities, the key of this paper is to give an explanation for that on the premise of increasing damping term, the well-posedness and decay can still preserve at low dissipation <span>\\(\\alpha &lt;1,\\)</span> and the relationship between dissipation and damping is given.</p>","PeriodicalId":501417,"journal":{"name":"Bulletin of the Brazilian Mathematical Society, New Series","volume":"3 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Well-Posedness and $$L^2$$ -Decay Estimates for the Navier–Stokes Equations with Fractional Dissipation and Damping\",\"authors\":\"Chengfeng Sun, Yuanyuan Xue, Hui Liu\",\"doi\":\"10.1007/s00574-024-00390-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The generalized three dimensional Navier–Stokes equations with damping are considered. Firstly, existence and uniqueness of strong solutions in the periodic domain <span>\\\\({\\\\mathbb {T}}^{3}\\\\)</span> are proved for <span>\\\\(\\\\frac{1}{2}&lt;\\\\alpha &lt;1,~~ \\\\beta +1\\\\ge \\\\frac{6\\\\alpha }{2\\\\alpha -1}\\\\in (6,+\\\\infty )\\\\)</span>. Then, in the whole space <span>\\\\(R^3,\\\\)</span> if the critical situation <span>\\\\(\\\\beta +1= \\\\frac{6\\\\alpha }{2\\\\alpha -1}\\\\)</span> and if <span>\\\\(u_{0}\\\\in H^{1}(R^{3}) \\\\bigcap {\\\\dot{H}}^{-s}(R^{3})\\\\)</span> with <span>\\\\(s\\\\in [0,1/2]\\\\)</span>, the decay rate of solution has been established. We give proofs of these two results, based on energy estimates and a series of interpolation inequalities, the key of this paper is to give an explanation for that on the premise of increasing damping term, the well-posedness and decay can still preserve at low dissipation <span>\\\\(\\\\alpha &lt;1,\\\\)</span> and the relationship between dissipation and damping is given.</p>\",\"PeriodicalId\":501417,\"journal\":{\"name\":\"Bulletin of the Brazilian Mathematical Society, New Series\",\"volume\":\"3 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-03-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bulletin of the Brazilian Mathematical Society, New Series\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s00574-024-00390-y\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of the Brazilian Mathematical Society, New Series","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s00574-024-00390-y","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

研究了带阻尼的广义三维纳维-斯托克斯方程。首先,在周期域 \({\mathbb {T}}^{3}\) 中证明了 \(\frac{1}{2}<\alpha <1,~~ \beta +1\ge \frac{6\alpha }{2\alpha -1}\in (6,+\infty )\) 的强解的存在性和唯一性。然后,在整个空间\(R^{3,\)中,如果临界情况\(beta +1=\frac{6\alpha }{2\alpha -1}\) 并且如果\(u_{0}\in H^{1}(R^{3}) \bigcap {dot{H}}^{-s}(R^{3})\) with \(s\in[0,1/2]\),解的衰减率已经建立。我们基于能量估计和一系列插值不等式给出了这两个结果的证明,本文的关键在于解释了在阻尼项增大的前提下,在低耗散\(\alpha <1,\)时仍能保持良好拟合和衰减,并给出了耗散与阻尼之间的关系。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Well-Posedness and $$L^2$$ -Decay Estimates for the Navier–Stokes Equations with Fractional Dissipation and Damping

The generalized three dimensional Navier–Stokes equations with damping are considered. Firstly, existence and uniqueness of strong solutions in the periodic domain \({\mathbb {T}}^{3}\) are proved for \(\frac{1}{2}<\alpha <1,~~ \beta +1\ge \frac{6\alpha }{2\alpha -1}\in (6,+\infty )\). Then, in the whole space \(R^3,\) if the critical situation \(\beta +1= \frac{6\alpha }{2\alpha -1}\) and if \(u_{0}\in H^{1}(R^{3}) \bigcap {\dot{H}}^{-s}(R^{3})\) with \(s\in [0,1/2]\), the decay rate of solution has been established. We give proofs of these two results, based on energy estimates and a series of interpolation inequalities, the key of this paper is to give an explanation for that on the premise of increasing damping term, the well-posedness and decay can still preserve at low dissipation \(\alpha <1,\) and the relationship between dissipation and damping is given.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信