G Bodner, C Bourdelle, P Manas, A Gallo, K Afonin, A Diallo, R Lunsford, Ph Moreau, A Nagy, F Clairet, C Gil, E Tsitrone, L Vermare, the WEST Team4
{"title":"通过注入硼粉提高约束性的 WEST L 模式放电稳定性分析","authors":"G Bodner, C Bourdelle, P Manas, A Gallo, K Afonin, A Diallo, R Lunsford, Ph Moreau, A Nagy, F Clairet, C Gil, E Tsitrone, L Vermare, the WEST Team4","doi":"10.1088/1361-6587/ad2c29","DOIUrl":null,"url":null,"abstract":"WEST L-mode plasmas with dominant electron heating and no core torque source have observed improvements in confinement during boron (B) powder injection. These results are reminiscent of previous powder injection experiments on other devices and gaseous impurity seeding experiments on WEST. During powder injection, the stored energy increased up to 25% due to enhanced ion and electron heat and particle confinement. The improvements in confinement were not indicative of an L-H transition. To identify the dominant mechanisms and the causality chain behind these improvements in confinement, we employ interpretative modeling using METIS, predictive integrated modeling using a high-fidelity plasma simulator (HFPS), and stand-alone gyrokinetic simulations using quasi-linear gyrokinetic code. Interpretative modeling with METIS allowed for the estimation of missing data while maintaining good overall consistency with experiment. These results provided the initial conditions for fully predictive flux driven simulations using the HFPS. From these simulations, quasi-linear gyrokinetic analysis was performed at <inline-formula>\n<tex-math><?CDATA $\\rho = 0.5$?></tex-math>\n<mml:math overflow=\"scroll\"><mml:mi>ρ</mml:mi><mml:mo>=</mml:mo><mml:mn>0.5</mml:mn></mml:math>\n<inline-graphic xlink:href=\"ppcfad2c29ieqn1.gif\" xlink:type=\"simple\"></inline-graphic>\n</inline-formula> and <inline-formula>\n<tex-math><?CDATA $\\rho = 0.65$?></tex-math>\n<mml:math overflow=\"scroll\"><mml:mi>ρ</mml:mi><mml:mo>=</mml:mo><mml:mn>0.65</mml:mn></mml:math>\n<inline-graphic xlink:href=\"ppcfad2c29ieqn2.gif\" xlink:type=\"simple\"></inline-graphic>\n</inline-formula>. Collisionality was found to be a strong candidate for the turbulence suppression mechanism at <inline-formula>\n<tex-math><?CDATA $\\rho = 0.5$?></tex-math>\n<mml:math overflow=\"scroll\"><mml:mi>ρ</mml:mi><mml:mo>=</mml:mo><mml:mn>0.5</mml:mn></mml:math>\n<inline-graphic xlink:href=\"ppcfad2c29ieqn3.gif\" xlink:type=\"simple\"></inline-graphic>\n</inline-formula>, while a combination of collisionality and the <inline-formula>\n<tex-math><?CDATA ${T_e}/{T_{\\text{i}}}$?></tex-math>\n<mml:math overflow=\"scroll\"><mml:mrow><mml:msub><mml:mi>T</mml:mi><mml:mi>e</mml:mi></mml:msub></mml:mrow><mml:mrow><mml:mo>/</mml:mo></mml:mrow><mml:mrow><mml:msub><mml:mi>T</mml:mi><mml:mrow><mml:mtext>i</mml:mtext></mml:mrow></mml:msub></mml:mrow></mml:math>\n<inline-graphic xlink:href=\"ppcfad2c29ieqn4.gif\" xlink:type=\"simple\"></inline-graphic>\n</inline-formula> ratio was found to be the likely mechanism at <inline-formula>\n<tex-math><?CDATA $\\rho = 0.65$?></tex-math>\n<mml:math overflow=\"scroll\"><mml:mi>ρ</mml:mi><mml:mo>=</mml:mo><mml:mn>0.65</mml:mn></mml:math>\n<inline-graphic xlink:href=\"ppcfad2c29ieqn5.gif\" xlink:type=\"simple\"></inline-graphic>\n</inline-formula>. The results additionally suggested that increased <inline-formula>\n<tex-math><?CDATA ${Z_{{\\text{eff}}}}$?></tex-math>\n<mml:math overflow=\"scroll\"><mml:mrow><mml:msub><mml:mi>Z</mml:mi><mml:mrow><mml:mrow><mml:mtext>eff</mml:mtext></mml:mrow></mml:mrow></mml:msub></mml:mrow></mml:math>\n<inline-graphic xlink:href=\"ppcfad2c29ieqn6.gif\" xlink:type=\"simple\"></inline-graphic>\n</inline-formula> (through main ion dilution) could play a role in the improved confinement, but this could not be confirmed due to a lack of experimental measurements. The modeling framework established here can now be used to evaluate and exploit a variety of future powder injection experiments.","PeriodicalId":20239,"journal":{"name":"Plasma Physics and Controlled Fusion","volume":"6 1","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2024-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Stability analysis of WEST L-mode discharges with improved confinement from boron powder injection\",\"authors\":\"G Bodner, C Bourdelle, P Manas, A Gallo, K Afonin, A Diallo, R Lunsford, Ph Moreau, A Nagy, F Clairet, C Gil, E Tsitrone, L Vermare, the WEST Team4\",\"doi\":\"10.1088/1361-6587/ad2c29\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"WEST L-mode plasmas with dominant electron heating and no core torque source have observed improvements in confinement during boron (B) powder injection. These results are reminiscent of previous powder injection experiments on other devices and gaseous impurity seeding experiments on WEST. During powder injection, the stored energy increased up to 25% due to enhanced ion and electron heat and particle confinement. The improvements in confinement were not indicative of an L-H transition. To identify the dominant mechanisms and the causality chain behind these improvements in confinement, we employ interpretative modeling using METIS, predictive integrated modeling using a high-fidelity plasma simulator (HFPS), and stand-alone gyrokinetic simulations using quasi-linear gyrokinetic code. Interpretative modeling with METIS allowed for the estimation of missing data while maintaining good overall consistency with experiment. These results provided the initial conditions for fully predictive flux driven simulations using the HFPS. From these simulations, quasi-linear gyrokinetic analysis was performed at <inline-formula>\\n<tex-math><?CDATA $\\\\rho = 0.5$?></tex-math>\\n<mml:math overflow=\\\"scroll\\\"><mml:mi>ρ</mml:mi><mml:mo>=</mml:mo><mml:mn>0.5</mml:mn></mml:math>\\n<inline-graphic xlink:href=\\\"ppcfad2c29ieqn1.gif\\\" xlink:type=\\\"simple\\\"></inline-graphic>\\n</inline-formula> and <inline-formula>\\n<tex-math><?CDATA $\\\\rho = 0.65$?></tex-math>\\n<mml:math overflow=\\\"scroll\\\"><mml:mi>ρ</mml:mi><mml:mo>=</mml:mo><mml:mn>0.65</mml:mn></mml:math>\\n<inline-graphic xlink:href=\\\"ppcfad2c29ieqn2.gif\\\" xlink:type=\\\"simple\\\"></inline-graphic>\\n</inline-formula>. Collisionality was found to be a strong candidate for the turbulence suppression mechanism at <inline-formula>\\n<tex-math><?CDATA $\\\\rho = 0.5$?></tex-math>\\n<mml:math overflow=\\\"scroll\\\"><mml:mi>ρ</mml:mi><mml:mo>=</mml:mo><mml:mn>0.5</mml:mn></mml:math>\\n<inline-graphic xlink:href=\\\"ppcfad2c29ieqn3.gif\\\" xlink:type=\\\"simple\\\"></inline-graphic>\\n</inline-formula>, while a combination of collisionality and the <inline-formula>\\n<tex-math><?CDATA ${T_e}/{T_{\\\\text{i}}}$?></tex-math>\\n<mml:math overflow=\\\"scroll\\\"><mml:mrow><mml:msub><mml:mi>T</mml:mi><mml:mi>e</mml:mi></mml:msub></mml:mrow><mml:mrow><mml:mo>/</mml:mo></mml:mrow><mml:mrow><mml:msub><mml:mi>T</mml:mi><mml:mrow><mml:mtext>i</mml:mtext></mml:mrow></mml:msub></mml:mrow></mml:math>\\n<inline-graphic xlink:href=\\\"ppcfad2c29ieqn4.gif\\\" xlink:type=\\\"simple\\\"></inline-graphic>\\n</inline-formula> ratio was found to be the likely mechanism at <inline-formula>\\n<tex-math><?CDATA $\\\\rho = 0.65$?></tex-math>\\n<mml:math overflow=\\\"scroll\\\"><mml:mi>ρ</mml:mi><mml:mo>=</mml:mo><mml:mn>0.65</mml:mn></mml:math>\\n<inline-graphic xlink:href=\\\"ppcfad2c29ieqn5.gif\\\" xlink:type=\\\"simple\\\"></inline-graphic>\\n</inline-formula>. The results additionally suggested that increased <inline-formula>\\n<tex-math><?CDATA ${Z_{{\\\\text{eff}}}}$?></tex-math>\\n<mml:math overflow=\\\"scroll\\\"><mml:mrow><mml:msub><mml:mi>Z</mml:mi><mml:mrow><mml:mrow><mml:mtext>eff</mml:mtext></mml:mrow></mml:mrow></mml:msub></mml:mrow></mml:math>\\n<inline-graphic xlink:href=\\\"ppcfad2c29ieqn6.gif\\\" xlink:type=\\\"simple\\\"></inline-graphic>\\n</inline-formula> (through main ion dilution) could play a role in the improved confinement, but this could not be confirmed due to a lack of experimental measurements. The modeling framework established here can now be used to evaluate and exploit a variety of future powder injection experiments.\",\"PeriodicalId\":20239,\"journal\":{\"name\":\"Plasma Physics and Controlled Fusion\",\"volume\":\"6 1\",\"pages\":\"\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2024-03-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Plasma Physics and Controlled Fusion\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1088/1361-6587/ad2c29\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, FLUIDS & PLASMAS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plasma Physics and Controlled Fusion","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1088/1361-6587/ad2c29","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, FLUIDS & PLASMAS","Score":null,"Total":0}
引用次数: 0
摘要
在注入硼(B)粉末的过程中,观察到电子加热占主导地位且没有核心扭矩源的 WEST L 模式等离子体的约束性有所改善。这些结果与之前在其他设备上进行的粉末注入实验以及在 WEST 上进行的气体杂质播种实验相似。在粉末注入过程中,由于离子和电子热量以及粒子约束的增强,存储能量最多增加了 25%。封闭性的改善并不表明发生了 L-H 转变。为了确定这些束缚改进背后的主要机制和因果关系链,我们使用 METIS 进行了解释性建模,使用高保真等离子体模拟器(HFPS)进行了预测性综合建模,并使用准线性陀螺动力学代码进行了独立的陀螺动力学模拟。利用 METIS 进行的解释性建模可以对缺失数据进行估计,同时与实验保持良好的整体一致性。这些结果为使用 HFPS 进行完全预测通量驱动模拟提供了初始条件。根据这些模拟结果,在 ρ=0.5 和 ρ=0.65 时进行了准线性陀螺动力学分析。在 ρ=0.5 时,碰撞性被认为是湍流抑制机制的有力候选者,而在ρ=0.65 时,碰撞性和 Te/Ti 比率的组合被认为是可能的机制。研究结果还表明,Zeff 的增加(通过主离子稀释)可能在提高禁锢度方面起到一定作用,但由于缺乏实验测量数据,这一点未能得到证实。本文建立的建模框架现在可用于评估和利用未来的各种粉末注入实验。
Stability analysis of WEST L-mode discharges with improved confinement from boron powder injection
WEST L-mode plasmas with dominant electron heating and no core torque source have observed improvements in confinement during boron (B) powder injection. These results are reminiscent of previous powder injection experiments on other devices and gaseous impurity seeding experiments on WEST. During powder injection, the stored energy increased up to 25% due to enhanced ion and electron heat and particle confinement. The improvements in confinement were not indicative of an L-H transition. To identify the dominant mechanisms and the causality chain behind these improvements in confinement, we employ interpretative modeling using METIS, predictive integrated modeling using a high-fidelity plasma simulator (HFPS), and stand-alone gyrokinetic simulations using quasi-linear gyrokinetic code. Interpretative modeling with METIS allowed for the estimation of missing data while maintaining good overall consistency with experiment. These results provided the initial conditions for fully predictive flux driven simulations using the HFPS. From these simulations, quasi-linear gyrokinetic analysis was performed at ρ=0.5 and ρ=0.65. Collisionality was found to be a strong candidate for the turbulence suppression mechanism at ρ=0.5, while a combination of collisionality and the Te/Ti ratio was found to be the likely mechanism at ρ=0.65. The results additionally suggested that increased Zeff (through main ion dilution) could play a role in the improved confinement, but this could not be confirmed due to a lack of experimental measurements. The modeling framework established here can now be used to evaluate and exploit a variety of future powder injection experiments.
期刊介绍:
Plasma Physics and Controlled Fusion covers all aspects of the physics of hot, highly ionised plasmas. This includes results of current experimental and theoretical research on all aspects of the physics of high-temperature plasmas and of controlled nuclear fusion, including the basic phenomena in highly-ionised gases in the laboratory, in the ionosphere and in space, in magnetic-confinement and inertial-confinement fusion as well as related diagnostic methods.
Papers with a technological emphasis, for example in such topics as plasma control, fusion technology and diagnostics, are welcomed when the plasma physics is an integral part of the paper or when the technology is unique to plasma applications or new to the field of plasma physics. Papers on dusty plasma physics are welcome when there is a clear relevance to fusion.