{"title":"受粘性耗散和活化能影响的非线性细长里加板上的导电混合对流纳米流体流动","authors":"Bilal Ali, Sidra Jubair, Zafar Mahmood*, Md Irfanul Haque Siddiqui","doi":"10.1142/s0217984924503366","DOIUrl":null,"url":null,"abstract":"<p>This paper reports the mass and energy transmission characteristics of an electrically conducting mixed convective nanofluid flow past a stretching Riga plate. An additional effect of viscous dissipation, Arrhenius activation energy and heat source is also studied. The energy and mass transmissions are evaluated by a zero-mass flux of nanoparticle and convective boundary conditions. Buongiorno’s relations are proposed for the Brownian motion and thermophoretic diffusion. The similarity substitutions are employed to derive the non-dimensional set of modeled equations. The obtained set of equations is numerically processed via parametric continuation method (PCM). Several flow factors affecting the velocity, energy, and mass distributions are graphically discussed. It has been perceived that the fluid velocity field declines with the influence of velocity power index (<i>m</i>), while improves with the upshot of modified Hartmann number (<i>Q</i>). The effect of Schmidt number and chemical reaction diminishes the concentration profile <span><math altimg=\"eq-00001.gif\" display=\"inline\" overflow=\"scroll\"><mi>φ</mi><mo stretchy=\"false\">(</mo><mi>η</mi><mo stretchy=\"false\">)</mo></math></span><span></span>. Furthermore, the energy curve enhances with the effect of thermophoresis factor, Biot and Eckert number.</p>","PeriodicalId":18570,"journal":{"name":"Modern Physics Letters B","volume":"19 1","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2024-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Electrically conducting mixed convective nanofluid flow past a nonlinearly slender Riga plate subjected to viscous dissipation and activation energy\",\"authors\":\"Bilal Ali, Sidra Jubair, Zafar Mahmood*, Md Irfanul Haque Siddiqui\",\"doi\":\"10.1142/s0217984924503366\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>This paper reports the mass and energy transmission characteristics of an electrically conducting mixed convective nanofluid flow past a stretching Riga plate. An additional effect of viscous dissipation, Arrhenius activation energy and heat source is also studied. The energy and mass transmissions are evaluated by a zero-mass flux of nanoparticle and convective boundary conditions. Buongiorno’s relations are proposed for the Brownian motion and thermophoretic diffusion. The similarity substitutions are employed to derive the non-dimensional set of modeled equations. The obtained set of equations is numerically processed via parametric continuation method (PCM). Several flow factors affecting the velocity, energy, and mass distributions are graphically discussed. It has been perceived that the fluid velocity field declines with the influence of velocity power index (<i>m</i>), while improves with the upshot of modified Hartmann number (<i>Q</i>). The effect of Schmidt number and chemical reaction diminishes the concentration profile <span><math altimg=\\\"eq-00001.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mi>φ</mi><mo stretchy=\\\"false\\\">(</mo><mi>η</mi><mo stretchy=\\\"false\\\">)</mo></math></span><span></span>. Furthermore, the energy curve enhances with the effect of thermophoresis factor, Biot and Eckert number.</p>\",\"PeriodicalId\":18570,\"journal\":{\"name\":\"Modern Physics Letters B\",\"volume\":\"19 1\",\"pages\":\"\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2024-03-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Modern Physics Letters B\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1142/s0217984924503366\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"PHYSICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Modern Physics Letters B","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1142/s0217984924503366","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, APPLIED","Score":null,"Total":0}
Electrically conducting mixed convective nanofluid flow past a nonlinearly slender Riga plate subjected to viscous dissipation and activation energy
This paper reports the mass and energy transmission characteristics of an electrically conducting mixed convective nanofluid flow past a stretching Riga plate. An additional effect of viscous dissipation, Arrhenius activation energy and heat source is also studied. The energy and mass transmissions are evaluated by a zero-mass flux of nanoparticle and convective boundary conditions. Buongiorno’s relations are proposed for the Brownian motion and thermophoretic diffusion. The similarity substitutions are employed to derive the non-dimensional set of modeled equations. The obtained set of equations is numerically processed via parametric continuation method (PCM). Several flow factors affecting the velocity, energy, and mass distributions are graphically discussed. It has been perceived that the fluid velocity field declines with the influence of velocity power index (m), while improves with the upshot of modified Hartmann number (Q). The effect of Schmidt number and chemical reaction diminishes the concentration profile . Furthermore, the energy curve enhances with the effect of thermophoresis factor, Biot and Eckert number.
期刊介绍:
MPLB opens a channel for the fast circulation of important and useful research findings in Condensed Matter Physics, Statistical Physics, as well as Atomic, Molecular and Optical Physics. A strong emphasis is placed on topics of current interest, such as cold atoms and molecules, new topological materials and phases, and novel low-dimensional materials. The journal also contains a Brief Reviews section with the purpose of publishing short reports on the latest experimental findings and urgent new theoretical developments.