平面波中的全偏振康普顿散射及其偏振传递

IF 4.8 1区 物理与天体物理 Q1 PHYSICS, MULTIDISCIPLINARY
Suo Tang, Yu Xin, Meng Wen, Mamat Ali Bake, Baisong Xie
{"title":"平面波中的全偏振康普顿散射及其偏振传递","authors":"Suo Tang, Yu Xin, Meng Wen, Mamat Ali Bake, Baisong Xie","doi":"10.1063/5.0196125","DOIUrl":null,"url":null,"abstract":"Fully polarized Compton scattering from a beam of spin-polarized electrons is investigated in plane-wave backgrounds in a broad intensity region from the perturbative to the nonperturbative regimes. In the perturbative regime, polarized linear Compton scattering is considered for investigating polarization transfer from a single laser photon to a scattered photon, and in the high-intensity region, the polarized locally monochromatic approximation and locally constant field approximation are established and are employed to study polarization transfer from an incoming electron to a scattered photon. The numerical results suggest an appreciable improvement of about 10% in the scattering probability in the intermediate-intensity region if the electron’s longitudinal spin is parallel to the laser rotation. The longitudinal spin of the incoming electron can be transferred to the scattered photon with an efficiency that increases with laser intensity and collisional energy. For collision between an optical laser with frequency ∼1 eV and a 10 GeV electron, this polarization transfer efficiency can increase from about 20% in the perturbative regime to about 50% in the nonperturbative regime for scattered photons with relatively high energy.","PeriodicalId":54221,"journal":{"name":"Matter and Radiation at Extremes","volume":"44 1","pages":""},"PeriodicalIF":4.8000,"publicationDate":"2024-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fully polarized Compton scattering in plane waves and its polarization transfer\",\"authors\":\"Suo Tang, Yu Xin, Meng Wen, Mamat Ali Bake, Baisong Xie\",\"doi\":\"10.1063/5.0196125\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Fully polarized Compton scattering from a beam of spin-polarized electrons is investigated in plane-wave backgrounds in a broad intensity region from the perturbative to the nonperturbative regimes. In the perturbative regime, polarized linear Compton scattering is considered for investigating polarization transfer from a single laser photon to a scattered photon, and in the high-intensity region, the polarized locally monochromatic approximation and locally constant field approximation are established and are employed to study polarization transfer from an incoming electron to a scattered photon. The numerical results suggest an appreciable improvement of about 10% in the scattering probability in the intermediate-intensity region if the electron’s longitudinal spin is parallel to the laser rotation. The longitudinal spin of the incoming electron can be transferred to the scattered photon with an efficiency that increases with laser intensity and collisional energy. For collision between an optical laser with frequency ∼1 eV and a 10 GeV electron, this polarization transfer efficiency can increase from about 20% in the perturbative regime to about 50% in the nonperturbative regime for scattered photons with relatively high energy.\",\"PeriodicalId\":54221,\"journal\":{\"name\":\"Matter and Radiation at Extremes\",\"volume\":\"44 1\",\"pages\":\"\"},\"PeriodicalIF\":4.8000,\"publicationDate\":\"2024-03-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Matter and Radiation at Extremes\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1063/5.0196125\",\"RegionNum\":1,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Matter and Radiation at Extremes","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1063/5.0196125","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

在平面波背景下,研究了一束自旋极化电子的全极化康普顿散射,其强度范围从微扰到非微扰。在扰动系统中,考虑了极化线性康普顿散射,以研究从单个激光光子到散射光子的极化转移;在高强度区域,建立了极化局部单色近似和局部恒定场近似,并将其用于研究从进入的电子到散射光子的极化转移。数值结果表明,如果电子的纵向自旋与激光旋转平行,那么在中等强度区域的散射概率会明显提高约 10%。入射电子的纵向自旋可以转移到散射光子上,其效率随激光强度和碰撞能量的增加而增加。在频率为 1 eV 的光学激光与 10 GeV 电子碰撞时,对于能量相对较高的散射光子,这种极化转移效率可从扰动机制下的约 20% 提高到非扰动机制下的约 50%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Fully polarized Compton scattering in plane waves and its polarization transfer
Fully polarized Compton scattering from a beam of spin-polarized electrons is investigated in plane-wave backgrounds in a broad intensity region from the perturbative to the nonperturbative regimes. In the perturbative regime, polarized linear Compton scattering is considered for investigating polarization transfer from a single laser photon to a scattered photon, and in the high-intensity region, the polarized locally monochromatic approximation and locally constant field approximation are established and are employed to study polarization transfer from an incoming electron to a scattered photon. The numerical results suggest an appreciable improvement of about 10% in the scattering probability in the intermediate-intensity region if the electron’s longitudinal spin is parallel to the laser rotation. The longitudinal spin of the incoming electron can be transferred to the scattered photon with an efficiency that increases with laser intensity and collisional energy. For collision between an optical laser with frequency ∼1 eV and a 10 GeV electron, this polarization transfer efficiency can increase from about 20% in the perturbative regime to about 50% in the nonperturbative regime for scattered photons with relatively high energy.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Matter and Radiation at Extremes
Matter and Radiation at Extremes Physics and Astronomy-Atomic and Molecular Physics, and Optics
CiteScore
8.60
自引率
9.80%
发文量
160
审稿时长
15 weeks
期刊介绍: Matter and Radiation at Extremes (MRE), is committed to the publication of original and impactful research and review papers that address extreme states of matter and radiation, and the associated science and technology that are employed to produce and diagnose these conditions in the laboratory. Drivers, targets and diagnostics are included along with related numerical simulation and computational methods. It aims to provide a peer-reviewed platform for the international physics community and promote worldwide dissemination of the latest and impactful research in related fields.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信