CuO纳米颗粒和多壁碳纳米管在对称多孔管道中的混合纳米流体在蠕动运动下的流动和传热

IF 1.8 4区 物理与天体物理 Q3 PHYSICS, APPLIED
Noreen Sher Akbar, Javaria Akram, M. Fiaz Hussain, E. N. Maraj, Taseer Muhammad
{"title":"CuO纳米颗粒和多壁碳纳米管在对称多孔管道中的混合纳米流体在蠕动运动下的流动和传热","authors":"Noreen Sher Akbar, Javaria Akram, M. Fiaz Hussain, E. N. Maraj, Taseer Muhammad","doi":"10.1142/s0217984924503330","DOIUrl":null,"url":null,"abstract":"<p>This study focuses on the analysis of peristaltic transport of a hybrid nanofluid comprising deionized water as a base fluid and the multi-walled carbon nanotubes (MWCNTs) and copper oxide (CuO) as nanoparticles within a sinusoidal wavy porous duct, taking into consideration the influence of heat generation or absorption. The inaugural literature piece addresses the utilization of hybrid nanofluid in the context of peristaltic flow within ducts. To simplify the analysis, we have converted the non-dimensional equations into a two-dimensional (2D) coordinate system using the assumptions of a very long wavelength <span><math altimg=\"eq-00001.gif\" display=\"inline\" overflow=\"scroll\"><mo stretchy=\"false\">(</mo><mi>δ</mi><mo>&lt;</mo><mn>1</mn><mo stretchy=\"false\">)</mo></math></span><span></span> and low Reynolds number (Re). The non-dimensional equations governing the behavior of the hybrid nanofluid are then solved numerically using the finite volume method. Numerical solutions for temperature and the 2D peristaltic flow are obtained with the assistance of the Mathematics software MATLAB. These solutions are subsequently represented graphically using MATLAB software. The graphical results highlight several key findings for important parameters. First, it is observed that the pressure rise, temperature profile, and pressure gradient in the hybrid nanofluid (CuMWCNTs/H<sub>2</sub>O) flow increases as heat generation increases. Furthermore, an increase in the nanoparticle volume fraction of both nanoparticles leads to a decrease in the pressure rise and pressure gradient in the hybrid nanofluid flow. Additionally, the widening of the channel reduces the pressure gradient and pressure rise in the CuMWCNTs/H<sub>2</sub>O hybrid nanofluid. The analysis also includes the visualization of streamlines for peristaltic transport. These streamlines reveal that an increase in amplitude results in larger bolus sizes, while heightened heat generation has the opposite effect, decreasing bolus sizes. The results of this investigation can be found in various cooling devices as flows in the ducts are very frequently utilized for the cooling process of engines. A further topic is common in applications related to microfluidics, heat exchangers, and biomedical devices where peristaltic pumping is employed. Our results are in 100% agreement with the existing literature in special cases.</p>","PeriodicalId":18570,"journal":{"name":"Modern Physics Letters B","volume":"18 1","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2024-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Hybrid nanofluid flow and heat transfer in symmetric porous ducts with CuO nanoparticles and multi-walled carbon nanotubes under peristaltic motion\",\"authors\":\"Noreen Sher Akbar, Javaria Akram, M. Fiaz Hussain, E. N. Maraj, Taseer Muhammad\",\"doi\":\"10.1142/s0217984924503330\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>This study focuses on the analysis of peristaltic transport of a hybrid nanofluid comprising deionized water as a base fluid and the multi-walled carbon nanotubes (MWCNTs) and copper oxide (CuO) as nanoparticles within a sinusoidal wavy porous duct, taking into consideration the influence of heat generation or absorption. The inaugural literature piece addresses the utilization of hybrid nanofluid in the context of peristaltic flow within ducts. To simplify the analysis, we have converted the non-dimensional equations into a two-dimensional (2D) coordinate system using the assumptions of a very long wavelength <span><math altimg=\\\"eq-00001.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mo stretchy=\\\"false\\\">(</mo><mi>δ</mi><mo>&lt;</mo><mn>1</mn><mo stretchy=\\\"false\\\">)</mo></math></span><span></span> and low Reynolds number (Re). The non-dimensional equations governing the behavior of the hybrid nanofluid are then solved numerically using the finite volume method. Numerical solutions for temperature and the 2D peristaltic flow are obtained with the assistance of the Mathematics software MATLAB. These solutions are subsequently represented graphically using MATLAB software. The graphical results highlight several key findings for important parameters. First, it is observed that the pressure rise, temperature profile, and pressure gradient in the hybrid nanofluid (CuMWCNTs/H<sub>2</sub>O) flow increases as heat generation increases. Furthermore, an increase in the nanoparticle volume fraction of both nanoparticles leads to a decrease in the pressure rise and pressure gradient in the hybrid nanofluid flow. Additionally, the widening of the channel reduces the pressure gradient and pressure rise in the CuMWCNTs/H<sub>2</sub>O hybrid nanofluid. The analysis also includes the visualization of streamlines for peristaltic transport. These streamlines reveal that an increase in amplitude results in larger bolus sizes, while heightened heat generation has the opposite effect, decreasing bolus sizes. The results of this investigation can be found in various cooling devices as flows in the ducts are very frequently utilized for the cooling process of engines. A further topic is common in applications related to microfluidics, heat exchangers, and biomedical devices where peristaltic pumping is employed. Our results are in 100% agreement with the existing literature in special cases.</p>\",\"PeriodicalId\":18570,\"journal\":{\"name\":\"Modern Physics Letters B\",\"volume\":\"18 1\",\"pages\":\"\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2024-03-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Modern Physics Letters B\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1142/s0217984924503330\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"PHYSICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Modern Physics Letters B","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1142/s0217984924503330","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

本研究重点分析了以去离子水为基础流体,以多壁碳纳米管(MWCNTs)和氧化铜(CuO)为纳米颗粒的混合纳米流体在正弦波形多孔管道内的蠕动传输,同时考虑了热量产生或吸收的影响。首篇文献探讨了在管道内蠕动流的背景下利用混合纳米流体的问题。为了简化分析,我们使用超长波长(δ<1)和低雷诺数(Re)假设,将非一维方程转换为二维(2D)坐标系。然后使用有限体积法对控制混合纳米流体行为的非二维方程进行数值求解。在数学软件 MATLAB 的帮助下,获得了温度和二维蠕动流的数值解。随后使用 MATLAB 软件以图形表示这些解。图形结果突出了重要参数的几个关键发现。首先,可以观察到混合纳米流体(CuMWCNTs/H2O)流动中的压力上升、温度曲线和压力梯度随着发热量的增加而增大。此外,两种纳米粒子体积分数的增加会导致混合纳米流体中的压力上升和压力梯度下降。此外,通道的拓宽也降低了 CuMWCNTs/H2O 混合纳米流体中的压力梯度和压力上升。分析还包括蠕动输送流线的可视化。这些流线显示,振幅的增加会导致栓塞尺寸增大,而热量产生的增加则会产生相反的效果,使栓塞尺寸减小。这项研究的结果可以在各种冷却设备中找到,因为管道中的流动经常被用于发动机的冷却过程。此外,在与微流控、热交换器和生物医学设备相关的应用中,蠕动泵的使用也是一个常见的话题。在特殊情况下,我们的研究结果与现有文献100%一致。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Hybrid nanofluid flow and heat transfer in symmetric porous ducts with CuO nanoparticles and multi-walled carbon nanotubes under peristaltic motion

This study focuses on the analysis of peristaltic transport of a hybrid nanofluid comprising deionized water as a base fluid and the multi-walled carbon nanotubes (MWCNTs) and copper oxide (CuO) as nanoparticles within a sinusoidal wavy porous duct, taking into consideration the influence of heat generation or absorption. The inaugural literature piece addresses the utilization of hybrid nanofluid in the context of peristaltic flow within ducts. To simplify the analysis, we have converted the non-dimensional equations into a two-dimensional (2D) coordinate system using the assumptions of a very long wavelength (δ<1) and low Reynolds number (Re). The non-dimensional equations governing the behavior of the hybrid nanofluid are then solved numerically using the finite volume method. Numerical solutions for temperature and the 2D peristaltic flow are obtained with the assistance of the Mathematics software MATLAB. These solutions are subsequently represented graphically using MATLAB software. The graphical results highlight several key findings for important parameters. First, it is observed that the pressure rise, temperature profile, and pressure gradient in the hybrid nanofluid (CuMWCNTs/H2O) flow increases as heat generation increases. Furthermore, an increase in the nanoparticle volume fraction of both nanoparticles leads to a decrease in the pressure rise and pressure gradient in the hybrid nanofluid flow. Additionally, the widening of the channel reduces the pressure gradient and pressure rise in the CuMWCNTs/H2O hybrid nanofluid. The analysis also includes the visualization of streamlines for peristaltic transport. These streamlines reveal that an increase in amplitude results in larger bolus sizes, while heightened heat generation has the opposite effect, decreasing bolus sizes. The results of this investigation can be found in various cooling devices as flows in the ducts are very frequently utilized for the cooling process of engines. A further topic is common in applications related to microfluidics, heat exchangers, and biomedical devices where peristaltic pumping is employed. Our results are in 100% agreement with the existing literature in special cases.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Modern Physics Letters B
Modern Physics Letters B 物理-物理:凝聚态物理
CiteScore
3.70
自引率
10.50%
发文量
235
审稿时长
5.9 months
期刊介绍: MPLB opens a channel for the fast circulation of important and useful research findings in Condensed Matter Physics, Statistical Physics, as well as Atomic, Molecular and Optical Physics. A strong emphasis is placed on topics of current interest, such as cold atoms and molecules, new topological materials and phases, and novel low-dimensional materials. The journal also contains a Brief Reviews section with the purpose of publishing short reports on the latest experimental findings and urgent new theoretical developments.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信