{"title":"电信系统中批量队列的非平凡泊松到达条件下队列长度矩公式的一般化","authors":"","doi":"10.1134/s003294602304004x","DOIUrl":null,"url":null,"abstract":"<h3>Abstract</h3> <p>We propose an approach for generalization of formulas previously obtained by the authors for the first and second queue length moments in a queueing system with a nonordinary Poissonian arrival flow, single server, and constant service time to the case of a variable service time. The service time is assumed to be a random variable with a finite set of values. This model is adequate for a vast class of batch transmission systems, since the batch transmission time in real-world systems can take only finitely many values.</p>","PeriodicalId":54581,"journal":{"name":"Problems of Information Transmission","volume":"34 1","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Generalization of Formulas for Queue Length Moments under Nonordinary Poissonian Arrivals for Batch Queues in Telecommunication Systems\",\"authors\":\"\",\"doi\":\"10.1134/s003294602304004x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<h3>Abstract</h3> <p>We propose an approach for generalization of formulas previously obtained by the authors for the first and second queue length moments in a queueing system with a nonordinary Poissonian arrival flow, single server, and constant service time to the case of a variable service time. The service time is assumed to be a random variable with a finite set of values. This model is adequate for a vast class of batch transmission systems, since the batch transmission time in real-world systems can take only finitely many values.</p>\",\"PeriodicalId\":54581,\"journal\":{\"name\":\"Problems of Information Transmission\",\"volume\":\"34 1\",\"pages\":\"\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2023-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Problems of Information Transmission\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1134/s003294602304004x\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, THEORY & METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Problems of Information Transmission","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1134/s003294602304004x","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
Generalization of Formulas for Queue Length Moments under Nonordinary Poissonian Arrivals for Batch Queues in Telecommunication Systems
Abstract
We propose an approach for generalization of formulas previously obtained by the authors for the first and second queue length moments in a queueing system with a nonordinary Poissonian arrival flow, single server, and constant service time to the case of a variable service time. The service time is assumed to be a random variable with a finite set of values. This model is adequate for a vast class of batch transmission systems, since the batch transmission time in real-world systems can take only finitely many values.
期刊介绍:
Problems of Information Transmission is of interest to researcher in all fields concerned with the research and development of communication systems. This quarterly journal features coverage of statistical information theory; coding theory and techniques; noisy channels; error detection and correction; signal detection, extraction, and analysis; analysis of communication networks; optimal processing and routing; the theory of random processes; and bionics.