{"title":"具有最佳双向距离剖面的卷积码","authors":"","doi":"10.1134/s0032946023030018","DOIUrl":null,"url":null,"abstract":"<h3>Abstract</h3> <p>We define the bidirectional distance profile (BDP) of a convolutional code as the minimum of the distance profiles of the code and its corresponding “reverse” code. We present tables of codes with the optimum BDP (OBDP), which minimize the average complexity of bidirectional sequential decoding algorithms. The computer search is accelerated by the facts that optimum distance profile (ODP) codes of larger memory must have ODP codes of smaller memory as their “prefixes”, and that OBDP codes can be obtained by “concatenating” ODP and reverse ODP codes of smaller memory. We compare the performance of OBDP codes and other codes by simulation.</p>","PeriodicalId":54581,"journal":{"name":"Problems of Information Transmission","volume":null,"pages":null},"PeriodicalIF":0.5000,"publicationDate":"2023-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Convolutional Codes with Optimum Bidirectional Distance Profile\",\"authors\":\"\",\"doi\":\"10.1134/s0032946023030018\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<h3>Abstract</h3> <p>We define the bidirectional distance profile (BDP) of a convolutional code as the minimum of the distance profiles of the code and its corresponding “reverse” code. We present tables of codes with the optimum BDP (OBDP), which minimize the average complexity of bidirectional sequential decoding algorithms. The computer search is accelerated by the facts that optimum distance profile (ODP) codes of larger memory must have ODP codes of smaller memory as their “prefixes”, and that OBDP codes can be obtained by “concatenating” ODP and reverse ODP codes of smaller memory. We compare the performance of OBDP codes and other codes by simulation.</p>\",\"PeriodicalId\":54581,\"journal\":{\"name\":\"Problems of Information Transmission\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2023-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Problems of Information Transmission\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1134/s0032946023030018\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, THEORY & METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Problems of Information Transmission","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1134/s0032946023030018","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
Convolutional Codes with Optimum Bidirectional Distance Profile
Abstract
We define the bidirectional distance profile (BDP) of a convolutional code as the minimum of the distance profiles of the code and its corresponding “reverse” code. We present tables of codes with the optimum BDP (OBDP), which minimize the average complexity of bidirectional sequential decoding algorithms. The computer search is accelerated by the facts that optimum distance profile (ODP) codes of larger memory must have ODP codes of smaller memory as their “prefixes”, and that OBDP codes can be obtained by “concatenating” ODP and reverse ODP codes of smaller memory. We compare the performance of OBDP codes and other codes by simulation.
期刊介绍:
Problems of Information Transmission is of interest to researcher in all fields concerned with the research and development of communication systems. This quarterly journal features coverage of statistical information theory; coding theory and techniques; noisy channels; error detection and correction; signal detection, extraction, and analysis; analysis of communication networks; optimal processing and routing; the theory of random processes; and bionics.