经典期权定价的替代方案

W. Brent Lindquist, Svetlozar T. Rachev
{"title":"经典期权定价的替代方案","authors":"W. Brent Lindquist, Svetlozar T. Rachev","doi":"arxiv-2403.17187","DOIUrl":null,"url":null,"abstract":"We develop two alternate approaches to arbitrage-free, market-complete,\noption pricing. The first approach requires no riskless asset. We develop the\ngeneral framework for this approach and illustrate it with two specific\nexamples. The second approach does use a riskless asset. However, by ensuring\nequality between real-world and risk-neutral price-change probabilities, the\nsecond approach enables the computation of risk-neutral option prices utilizing\nexpectations under the natural world probability P. This produces the same\noption prices as the classical approach in which prices are computed under the\nrisk neutral measure Q. The second approach and the two specific examples of\nthe first approach require the introduction of new, marketable asset types,\nspecifically perpetual derivatives of a stock, and a stock whose cumulative\nreturn (rather than price) is deflated.","PeriodicalId":501355,"journal":{"name":"arXiv - QuantFin - Pricing of Securities","volume":"194 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Alternatives to classical option pricing\",\"authors\":\"W. Brent Lindquist, Svetlozar T. Rachev\",\"doi\":\"arxiv-2403.17187\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We develop two alternate approaches to arbitrage-free, market-complete,\\noption pricing. The first approach requires no riskless asset. We develop the\\ngeneral framework for this approach and illustrate it with two specific\\nexamples. The second approach does use a riskless asset. However, by ensuring\\nequality between real-world and risk-neutral price-change probabilities, the\\nsecond approach enables the computation of risk-neutral option prices utilizing\\nexpectations under the natural world probability P. This produces the same\\noption prices as the classical approach in which prices are computed under the\\nrisk neutral measure Q. The second approach and the two specific examples of\\nthe first approach require the introduction of new, marketable asset types,\\nspecifically perpetual derivatives of a stock, and a stock whose cumulative\\nreturn (rather than price) is deflated.\",\"PeriodicalId\":501355,\"journal\":{\"name\":\"arXiv - QuantFin - Pricing of Securities\",\"volume\":\"194 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-03-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - QuantFin - Pricing of Securities\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2403.17187\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - QuantFin - Pricing of Securities","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2403.17187","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们开发了两种无套利、市场完全期权定价的替代方法。第一种方法不需要无风险资产。我们建立了这种方法的一般框架,并用两个具体例子加以说明。第二种方法确实使用了无风险资产。然而,通过确保现实世界与风险中性价格变化概率之间的不平等,第二种方法可以利用自然世界概率 P 下的预期来计算风险中性期权价格,从而产生与经典方法相同的期权价格,后者的价格是在风险中性度量 Q 下计算的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Alternatives to classical option pricing
We develop two alternate approaches to arbitrage-free, market-complete, option pricing. The first approach requires no riskless asset. We develop the general framework for this approach and illustrate it with two specific examples. The second approach does use a riskless asset. However, by ensuring equality between real-world and risk-neutral price-change probabilities, the second approach enables the computation of risk-neutral option prices utilizing expectations under the natural world probability P. This produces the same option prices as the classical approach in which prices are computed under the risk neutral measure Q. The second approach and the two specific examples of the first approach require the introduction of new, marketable asset types, specifically perpetual derivatives of a stock, and a stock whose cumulative return (rather than price) is deflated.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信