通过模拟发现发射非无效脉冲星的特征

IF 1.8 4区 物理与天体物理 Q3 ASTRONOMY & ASTROPHYSICS
Rai Yuen
{"title":"通过模拟发现发射非无效脉冲星的特征","authors":"Rai Yuen","doi":"10.1088/1674-4527/ad2ee0","DOIUrl":null,"url":null,"abstract":"We investigate the population and several properties of radio pulsars whose emission does not null (non-nulling) through simulation of a large pulsar sample. Emission from a pulsar is identified as non-nulling if (i) the emission does not cease across the whole pulse profile, and (ii) the emission is detectable. For (i), we adopt a model for switching in the plasma charge density, and emission persists if the charge density is non-zero. For (ii), we assume that detectable emission originates from source points where it is emitted tangentially to the magnetic field-line and parallel to the line-of-sight. We find that pulsars exhibiting non-nulling emission possess obliquity angles with an average of 42.°5, and almost half the samples maintain a duty cycle between 0.05 and 0.2. Furthermore, the pulsar population is not fixed but dependent on the obliquity angle, with the population peaking at 20°. In addition, three evolutionary phases are identified in the pulsar population as the obliquity angle evolves, with the majority of samples having an obliquity angle between 20° and 65°. Our results also suggest that emission from a pulsar may evolve between nulling and non-nulling during its lifetime.","PeriodicalId":54494,"journal":{"name":"Research in Astronomy and Astrophysics","volume":"56 1","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2024-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Characteristics of Emission Non-nulling Pulsars Through Simulation\",\"authors\":\"Rai Yuen\",\"doi\":\"10.1088/1674-4527/ad2ee0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We investigate the population and several properties of radio pulsars whose emission does not null (non-nulling) through simulation of a large pulsar sample. Emission from a pulsar is identified as non-nulling if (i) the emission does not cease across the whole pulse profile, and (ii) the emission is detectable. For (i), we adopt a model for switching in the plasma charge density, and emission persists if the charge density is non-zero. For (ii), we assume that detectable emission originates from source points where it is emitted tangentially to the magnetic field-line and parallel to the line-of-sight. We find that pulsars exhibiting non-nulling emission possess obliquity angles with an average of 42.°5, and almost half the samples maintain a duty cycle between 0.05 and 0.2. Furthermore, the pulsar population is not fixed but dependent on the obliquity angle, with the population peaking at 20°. In addition, three evolutionary phases are identified in the pulsar population as the obliquity angle evolves, with the majority of samples having an obliquity angle between 20° and 65°. Our results also suggest that emission from a pulsar may evolve between nulling and non-nulling during its lifetime.\",\"PeriodicalId\":54494,\"journal\":{\"name\":\"Research in Astronomy and Astrophysics\",\"volume\":\"56 1\",\"pages\":\"\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2024-03-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Research in Astronomy and Astrophysics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1088/1674-4527/ad2ee0\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ASTRONOMY & ASTROPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Research in Astronomy and Astrophysics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1088/1674-4527/ad2ee0","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0

摘要

我们通过对大量脉冲星样本的模拟,研究了发射不归零(非归零)的射电脉冲星的数量和一些特性。如果(i)脉冲星的发射在整个脉冲剖面上没有停止,以及(ii)发射可以被探测到,那么该脉冲星的发射就被认定为非空。对于(i),我们采用等离子体电荷密度切换模型,如果电荷密度不为零,发射就会持续。对于(ii),我们假定可探测到的辐射来自与磁场线相切、与视线平行的发射源点。我们发现,表现出非空发射的脉冲星的斜角平均为 42.°5,几乎一半的样本的占空比保持在 0.05 到 0.2 之间。此外,脉冲星的数量并不固定,而是取决于倾角,其数量在 20°时达到峰值。此外,随着斜角的变化,脉冲星群也出现了三个演化阶段,大多数样本的斜角在 20° 和 65° 之间。我们的结果还表明,脉冲星的发射在其生命周期内可能会在空化和非空化之间演变。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Characteristics of Emission Non-nulling Pulsars Through Simulation
We investigate the population and several properties of radio pulsars whose emission does not null (non-nulling) through simulation of a large pulsar sample. Emission from a pulsar is identified as non-nulling if (i) the emission does not cease across the whole pulse profile, and (ii) the emission is detectable. For (i), we adopt a model for switching in the plasma charge density, and emission persists if the charge density is non-zero. For (ii), we assume that detectable emission originates from source points where it is emitted tangentially to the magnetic field-line and parallel to the line-of-sight. We find that pulsars exhibiting non-nulling emission possess obliquity angles with an average of 42.°5, and almost half the samples maintain a duty cycle between 0.05 and 0.2. Furthermore, the pulsar population is not fixed but dependent on the obliquity angle, with the population peaking at 20°. In addition, three evolutionary phases are identified in the pulsar population as the obliquity angle evolves, with the majority of samples having an obliquity angle between 20° and 65°. Our results also suggest that emission from a pulsar may evolve between nulling and non-nulling during its lifetime.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Research in Astronomy and Astrophysics
Research in Astronomy and Astrophysics 地学天文-天文与天体物理
CiteScore
3.20
自引率
16.70%
发文量
2599
审稿时长
6.0 months
期刊介绍: Research in Astronomy and Astrophysics (RAA) is an international journal publishing original research papers and reviews across all branches of astronomy and astrophysics, with a particular interest in the following topics: -large-scale structure of universe formation and evolution of galaxies- high-energy and cataclysmic processes in astrophysics- formation and evolution of stars- astrogeodynamics- solar magnetic activity and heliogeospace environments- dynamics of celestial bodies in the solar system and artificial bodies- space observation and exploration- new astronomical techniques and methods
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信