哈塞-维特矩阵的同余式和 p$-adic KZ方程的解

IF 0.5 4区 数学 Q3 MATHEMATICS
Alexander Varchenko, Wadim Zudilin
{"title":"哈塞-维特矩阵的同余式和 p$-adic KZ方程的解","authors":"Alexander Varchenko, Wadim Zudilin","doi":"10.4310/pamq.2024.v20.n1.a13","DOIUrl":null,"url":null,"abstract":"We prove general Dwork-type congruences for Hasse–Witt matrices attached to tuples of Laurent polynomials.We apply this result to establishing arithmetic and p-adic analytic properties of functions originating from polynomial solutions modulo $p^s$ of Knizhnik–Zamolodchikov (KZ) equations, the solutions which come as coefficients of master polynomials and whose coefficients are integers. As an application we show that the $p$-adic KZ connection associated with the family of hyperelliptic curves $y^2 = (t - z_1) \\dotsc (t - z_{2g+1})$ has an invariant subbundle of rank $g$. Notice that the corresponding complex KZ connection has no nontrivial subbundles due to the irreducibility of its monodromy representation.","PeriodicalId":54526,"journal":{"name":"Pure and Applied Mathematics Quarterly","volume":"13 1","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2024-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Congruences for Hasse-Witt matrices and solutions of $p$-adic KZ equations\",\"authors\":\"Alexander Varchenko, Wadim Zudilin\",\"doi\":\"10.4310/pamq.2024.v20.n1.a13\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We prove general Dwork-type congruences for Hasse–Witt matrices attached to tuples of Laurent polynomials.We apply this result to establishing arithmetic and p-adic analytic properties of functions originating from polynomial solutions modulo $p^s$ of Knizhnik–Zamolodchikov (KZ) equations, the solutions which come as coefficients of master polynomials and whose coefficients are integers. As an application we show that the $p$-adic KZ connection associated with the family of hyperelliptic curves $y^2 = (t - z_1) \\\\dotsc (t - z_{2g+1})$ has an invariant subbundle of rank $g$. Notice that the corresponding complex KZ connection has no nontrivial subbundles due to the irreducibility of its monodromy representation.\",\"PeriodicalId\":54526,\"journal\":{\"name\":\"Pure and Applied Mathematics Quarterly\",\"volume\":\"13 1\",\"pages\":\"\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2024-03-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Pure and Applied Mathematics Quarterly\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4310/pamq.2024.v20.n1.a13\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pure and Applied Mathematics Quarterly","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4310/pamq.2024.v20.n1.a13","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

我们将这一结果应用于建立源自克尼兹尼克-扎莫洛奇科夫(KZ)方程的多项式解 modulo $p^s$ 的函数的算术和 p-adic 分析性质,这些解是作为主多项式的系数出现的,其系数为整数。作为应用,我们证明了与超椭圆曲线族 $y^2 = (t - z_1) \dotsc (t - z_{2g+1})$ 相关的 $p$-adic KZ 连接有一个秩为 $g$ 的不变子束。请注意,由于其单色表示的不可还原性,相应的复 KZ 连接没有非难子束带。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Congruences for Hasse-Witt matrices and solutions of $p$-adic KZ equations
We prove general Dwork-type congruences for Hasse–Witt matrices attached to tuples of Laurent polynomials.We apply this result to establishing arithmetic and p-adic analytic properties of functions originating from polynomial solutions modulo $p^s$ of Knizhnik–Zamolodchikov (KZ) equations, the solutions which come as coefficients of master polynomials and whose coefficients are integers. As an application we show that the $p$-adic KZ connection associated with the family of hyperelliptic curves $y^2 = (t - z_1) \dotsc (t - z_{2g+1})$ has an invariant subbundle of rank $g$. Notice that the corresponding complex KZ connection has no nontrivial subbundles due to the irreducibility of its monodromy representation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.90
自引率
0.00%
发文量
30
审稿时长
>12 weeks
期刊介绍: Publishes high-quality, original papers on all fields of mathematics. To facilitate fruitful interchanges between mathematicians from different regions and specialties, and to effectively disseminate new breakthroughs in mathematics, the journal welcomes well-written submissions from all significant areas of mathematics. The editors are committed to promoting the highest quality of mathematical scholarship.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信