类$\mathcal{O}$模块上的纯辫状群作用

Pub Date : 2024-03-26 DOI:10.4310/pamq.2024.v20.n1.a3
Andrea Appel, Valerio Toledano Laredo
{"title":"类$\\mathcal{O}$模块上的纯辫状群作用","authors":"Andrea Appel, Valerio Toledano Laredo","doi":"10.4310/pamq.2024.v20.n1.a3","DOIUrl":null,"url":null,"abstract":"Let $\\mathfrak{g}$ be a symmetrisable Kac–Moody algebra and $U_\\hbar \\mathfrak{g}$ its quantised enveloping algebra. Answering a question of P. Etingof, we prove that the quantum Weyl group operators of $U_\\hbar \\mathfrak{g}$ give rise to a canonical action of the pure braid group of $\\mathfrak{g}$ on any category $\\mathcal{O}$ (not necessarily integrable) $U_\\hbar \\mathfrak{g}$-module $\\mathcal{V}$. By relying on our recent results $\\href{http://arxiv.org/abs/1512.03041}{[\\textrm{ATL15}]}$, we show that this action describes the monodromy of the rational Casimir connection on the $\\mathfrak{g}$-module $V$ corresponding to $\\mathcal{V}$. We also extend these results to yield equivalent representations of parabolic pure braid groups on parabolic category $\\mathcal{O}$ for $U_\\hbar \\mathfrak{g}$ and $\\mathfrak{g}$.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Pure braid group actions on category $\\\\mathcal{O}$ modules\",\"authors\":\"Andrea Appel, Valerio Toledano Laredo\",\"doi\":\"10.4310/pamq.2024.v20.n1.a3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let $\\\\mathfrak{g}$ be a symmetrisable Kac–Moody algebra and $U_\\\\hbar \\\\mathfrak{g}$ its quantised enveloping algebra. Answering a question of P. Etingof, we prove that the quantum Weyl group operators of $U_\\\\hbar \\\\mathfrak{g}$ give rise to a canonical action of the pure braid group of $\\\\mathfrak{g}$ on any category $\\\\mathcal{O}$ (not necessarily integrable) $U_\\\\hbar \\\\mathfrak{g}$-module $\\\\mathcal{V}$. By relying on our recent results $\\\\href{http://arxiv.org/abs/1512.03041}{[\\\\textrm{ATL15}]}$, we show that this action describes the monodromy of the rational Casimir connection on the $\\\\mathfrak{g}$-module $V$ corresponding to $\\\\mathcal{V}$. We also extend these results to yield equivalent representations of parabolic pure braid groups on parabolic category $\\\\mathcal{O}$ for $U_\\\\hbar \\\\mathfrak{g}$ and $\\\\mathfrak{g}$.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-03-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4310/pamq.2024.v20.n1.a3\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4310/pamq.2024.v20.n1.a3","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

让 $\mathfrak{g}$ 是一个可对称的 Kac-Moody 代数,而 $U_\hbar \mathfrak{g}$ 是它的量子化包络代数。为了回答 P. Etingof 的问题,我们证明了 $U_\hbar \mathfrak{g}$ 的量子韦尔群算子会在任何类别 $\mathcal{O}$ (不一定是可积分的)$U_\hbar \mathfrak{g}$ 模块 $\mathcal{V}$ 上产生 $\mathfrak{g}$ 的纯辫子群的规范作用。依靠我们最近的结果 $\href{http://arxiv.org/abs/1512.03041}{[\textrm{ATL15}]}$ ,我们证明了这个作用描述了与 $\mathcal{V}$ 相对应的、$\mathfrak{g}$-module $V$ 上的有理卡西米尔连接的单色性。我们还扩展了这些结果,得出了抛物面纯辫子群在抛物面范畴 $\mathcal{O}$ 上对于 $U_\hbar \mathfrak{g}$ 和 $\mathfrak{g}$ 的等价表示。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Pure braid group actions on category $\mathcal{O}$ modules
Let $\mathfrak{g}$ be a symmetrisable Kac–Moody algebra and $U_\hbar \mathfrak{g}$ its quantised enveloping algebra. Answering a question of P. Etingof, we prove that the quantum Weyl group operators of $U_\hbar \mathfrak{g}$ give rise to a canonical action of the pure braid group of $\mathfrak{g}$ on any category $\mathcal{O}$ (not necessarily integrable) $U_\hbar \mathfrak{g}$-module $\mathcal{V}$. By relying on our recent results $\href{http://arxiv.org/abs/1512.03041}{[\textrm{ATL15}]}$, we show that this action describes the monodromy of the rational Casimir connection on the $\mathfrak{g}$-module $V$ corresponding to $\mathcal{V}$. We also extend these results to yield equivalent representations of parabolic pure braid groups on parabolic category $\mathcal{O}$ for $U_\hbar \mathfrak{g}$ and $\mathfrak{g}$.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信