环状排列紧凑模型的同调基础

Pub Date : 2024-03-26 DOI:10.4310/pamq.2024.v20.n1.a9
Giovanni Gaiffi, Oscar Papini
{"title":"环状排列紧凑模型的同调基础","authors":"Giovanni Gaiffi, Oscar Papini","doi":"10.4310/pamq.2024.v20.n1.a9","DOIUrl":null,"url":null,"abstract":"In this paper we find monomial bases for the integer cohomology rings of compact wonderful models of toric arrangements. In the description of the monomials various combinatorial objects come into play: building sets, nested sets, and the fan of a suitable toric variety. We provide some examples computed via a SageMath program and then we focus on the case of the toric arrangements associated with root systems of type $A$. Here the combinatorial description of our basis offers a geometrical point of view on the relation between some Eulerian statistics on the symmetric group.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A basis for the cohomology of compact models of toric arrangements\",\"authors\":\"Giovanni Gaiffi, Oscar Papini\",\"doi\":\"10.4310/pamq.2024.v20.n1.a9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we find monomial bases for the integer cohomology rings of compact wonderful models of toric arrangements. In the description of the monomials various combinatorial objects come into play: building sets, nested sets, and the fan of a suitable toric variety. We provide some examples computed via a SageMath program and then we focus on the case of the toric arrangements associated with root systems of type $A$. Here the combinatorial description of our basis offers a geometrical point of view on the relation between some Eulerian statistics on the symmetric group.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-03-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4310/pamq.2024.v20.n1.a9\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4310/pamq.2024.v20.n1.a9","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们找到了环状排列的紧凑奇妙模型的整数同调环的单项式基。在单项式的描述中,各种组合对象都会发挥作用:构建集、嵌套集和合适的环状变的扇形。我们提供了一些通过 SageMath 程序计算的示例,然后重点讨论了与 $A$ 类型根系统相关的环状排列的情况。在这里,我们对基础的组合描述为对称群上一些欧拉统计量之间的关系提供了一个几何视角。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
A basis for the cohomology of compact models of toric arrangements
In this paper we find monomial bases for the integer cohomology rings of compact wonderful models of toric arrangements. In the description of the monomials various combinatorial objects come into play: building sets, nested sets, and the fan of a suitable toric variety. We provide some examples computed via a SageMath program and then we focus on the case of the toric arrangements associated with root systems of type $A$. Here the combinatorial description of our basis offers a geometrical point of view on the relation between some Eulerian statistics on the symmetric group.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信