关于 Drinfeld 共积

Pub Date : 2024-03-26 DOI:10.4310/pamq.2024.v20.n1.a6
Ilaria Damiani
{"title":"关于 Drinfeld 共积","authors":"Ilaria Damiani","doi":"10.4310/pamq.2024.v20.n1.a6","DOIUrl":null,"url":null,"abstract":"This paper provides a construction of the Drinfeld coproduct $\\Delta_v$ on an affine quantum Kac–Moody algebra or on a quantum affinization $\\mathcal{U}$ through the exponentials of some locally nilpotent derivations, thus proving that this “coproduct” with values in a suitable completion of $\\mathcal{U} \\oplus \\mathcal{U}$ is well defined. For the affine quantum algebras, $\\Delta_v$ is also obtained as “$t$-equivariant limit” of the Drinfeld–Jimbo coproduct $\\Delta$.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the Drinfeld coproduct\",\"authors\":\"Ilaria Damiani\",\"doi\":\"10.4310/pamq.2024.v20.n1.a6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper provides a construction of the Drinfeld coproduct $\\\\Delta_v$ on an affine quantum Kac–Moody algebra or on a quantum affinization $\\\\mathcal{U}$ through the exponentials of some locally nilpotent derivations, thus proving that this “coproduct” with values in a suitable completion of $\\\\mathcal{U} \\\\oplus \\\\mathcal{U}$ is well defined. For the affine quantum algebras, $\\\\Delta_v$ is also obtained as “$t$-equivariant limit” of the Drinfeld–Jimbo coproduct $\\\\Delta$.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-03-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4310/pamq.2024.v20.n1.a6\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4310/pamq.2024.v20.n1.a6","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文通过一些局部零potent 导数的指数,在仿射量子 Kac-Moody 代数或量子仿射 $\mathcal{U}$ 上构造了一个 Drinfeld 共乘积 $\Delta_v$,从而证明了这个 "共乘积 "的值在 $\mathcal{U} 的一个合适的完备中。\mathcal{U}$ 中的值的 "共积 "是定义明确的。对于仿射量子代数,$\Delta_v$ 也可以作为 Drinfeld-Jimbo 共乘积 $\Delta$ 的"$t$-常量极限 "而得到。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
On the Drinfeld coproduct
This paper provides a construction of the Drinfeld coproduct $\Delta_v$ on an affine quantum Kac–Moody algebra or on a quantum affinization $\mathcal{U}$ through the exponentials of some locally nilpotent derivations, thus proving that this “coproduct” with values in a suitable completion of $\mathcal{U} \oplus \mathcal{U}$ is well defined. For the affine quantum algebras, $\Delta_v$ is also obtained as “$t$-equivariant limit” of the Drinfeld–Jimbo coproduct $\Delta$.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信