$operatorname{Spf}\:\mathbb{Z}_p$棱镜化上的1$维形式群

Pub Date : 2024-03-26 DOI:10.4310/pamq.2024.v20.n1.a7
Vladimir Drinfeld
{"title":"$operatorname{Spf}\\:\\mathbb{Z}_p$棱镜化上的1$维形式群","authors":"Vladimir Drinfeld","doi":"10.4310/pamq.2024.v20.n1.a7","DOIUrl":null,"url":null,"abstract":"Let $\\Sigma$ denote the prismatization of $\\operatorname{Spf}\\:\\mathbb{Z}_p$. The multiplicative group over $\\Sigma$ maps to the prismatization of $\\mathbb{G}_m \\times \\operatorname{Spf}\\:\\mathbb{Z}_p$. We prove that the kernel of this map is the Cartier dual of some $1$-dimensional formal group over $\\Sigma$. We obtain some results about this formal group (e.g., we describe its Lie algebra). We give a very explicit description of the pullback of the formal group to the quotient stack $Q/\\mathbb{Z}^\\times_p$, where $Q$ is the $q$-de Rham prism.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A $1$-dimensional formal group over the prismatization of $\\\\operatorname{Spf}\\\\:\\\\mathbb{Z}_p$\",\"authors\":\"Vladimir Drinfeld\",\"doi\":\"10.4310/pamq.2024.v20.n1.a7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let $\\\\Sigma$ denote the prismatization of $\\\\operatorname{Spf}\\\\:\\\\mathbb{Z}_p$. The multiplicative group over $\\\\Sigma$ maps to the prismatization of $\\\\mathbb{G}_m \\\\times \\\\operatorname{Spf}\\\\:\\\\mathbb{Z}_p$. We prove that the kernel of this map is the Cartier dual of some $1$-dimensional formal group over $\\\\Sigma$. We obtain some results about this formal group (e.g., we describe its Lie algebra). We give a very explicit description of the pullback of the formal group to the quotient stack $Q/\\\\mathbb{Z}^\\\\times_p$, where $Q$ is the $q$-de Rham prism.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-03-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4310/pamq.2024.v20.n1.a7\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4310/pamq.2024.v20.n1.a7","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

让 $\Sigma$ 表示 $\operatorname{Spf}\:\mathbb{Z}_p$ 的棱镜化。$\Sigma$ 上的乘法群映射到 $\mathbb{G}_m \times \operatorname{Spf}\:\mathbb{Z}_p$ 的棱柱化。我们证明这个映射的内核是某个超过 $\Sigma$ 的 1$ 维形式群的卡蒂埃对偶。我们得到了关于这个形式群的一些结果(例如,我们描述了它的李代数)。我们给出了形式群对商栈 $Q/\mathbb{Z}^\times_p$ 的拉回的非常明确的描述,其中 $Q$ 是 $q$-de Rham 棱镜。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
A $1$-dimensional formal group over the prismatization of $\operatorname{Spf}\:\mathbb{Z}_p$
Let $\Sigma$ denote the prismatization of $\operatorname{Spf}\:\mathbb{Z}_p$. The multiplicative group over $\Sigma$ maps to the prismatization of $\mathbb{G}_m \times \operatorname{Spf}\:\mathbb{Z}_p$. We prove that the kernel of this map is the Cartier dual of some $1$-dimensional formal group over $\Sigma$. We obtain some results about this formal group (e.g., we describe its Lie algebra). We give a very explicit description of the pullback of the formal group to the quotient stack $Q/\mathbb{Z}^\times_p$, where $Q$ is the $q$-de Rham prism.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信