{"title":"改进的集束放射性有效液滴模型","authors":"JianPo Cui, FengZhu Xing, YongHao Gao, LiQian Qi, YanZhao Wang, JianZhong Gu","doi":"10.1088/1572-9494/ad2367","DOIUrl":null,"url":null,"abstract":"The effective liquid drop model (ELDM) is improved by introducing an accurate nuclear charge radius formula and an analytic expression for assaulting frequency. Within the improved effective liquid drop model (IMELDM), the experimental cluster radioactivity half-lives of the trans-lead region are calculated. It is shown that the accuracy of the IMELDM is improved compared with that of the ELDM. At last, the cluster radioactivity half-lives that are experimentally unavailable for the trans-lead nuclei are predicted by the IMELDM. These predictions may be useful for searching for new candidates for cluster radioactivity in future experiments.","PeriodicalId":10641,"journal":{"name":"Communications in Theoretical Physics","volume":"67 1","pages":""},"PeriodicalIF":2.4000,"publicationDate":"2024-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An improved effective liquid drop model for cluster radioactivity\",\"authors\":\"JianPo Cui, FengZhu Xing, YongHao Gao, LiQian Qi, YanZhao Wang, JianZhong Gu\",\"doi\":\"10.1088/1572-9494/ad2367\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The effective liquid drop model (ELDM) is improved by introducing an accurate nuclear charge radius formula and an analytic expression for assaulting frequency. Within the improved effective liquid drop model (IMELDM), the experimental cluster radioactivity half-lives of the trans-lead region are calculated. It is shown that the accuracy of the IMELDM is improved compared with that of the ELDM. At last, the cluster radioactivity half-lives that are experimentally unavailable for the trans-lead nuclei are predicted by the IMELDM. These predictions may be useful for searching for new candidates for cluster radioactivity in future experiments.\",\"PeriodicalId\":10641,\"journal\":{\"name\":\"Communications in Theoretical Physics\",\"volume\":\"67 1\",\"pages\":\"\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2024-03-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Communications in Theoretical Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1088/1572-9494/ad2367\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications in Theoretical Physics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1088/1572-9494/ad2367","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
An improved effective liquid drop model for cluster radioactivity
The effective liquid drop model (ELDM) is improved by introducing an accurate nuclear charge radius formula and an analytic expression for assaulting frequency. Within the improved effective liquid drop model (IMELDM), the experimental cluster radioactivity half-lives of the trans-lead region are calculated. It is shown that the accuracy of the IMELDM is improved compared with that of the ELDM. At last, the cluster radioactivity half-lives that are experimentally unavailable for the trans-lead nuclei are predicted by the IMELDM. These predictions may be useful for searching for new candidates for cluster radioactivity in future experiments.
期刊介绍:
Communications in Theoretical Physics is devoted to reporting important new developments in the area of theoretical physics. Papers cover the fields of:
mathematical physics
quantum physics and quantum information
particle physics and quantum field theory
nuclear physics
gravitation theory, astrophysics and cosmology
atomic, molecular, optics (AMO) and plasma physics, chemical physics
statistical physics, soft matter and biophysics
condensed matter theory
others
Certain new interdisciplinary subjects are also incorporated.