解析映射的近似半群

IF 1.1 2区 数学 Q1 MATHEMATICS
Byoung Jin Choi, Un Cig Ji, Yongdo Lim, Miklós Pálfia
{"title":"解析映射的近似半群","authors":"Byoung Jin Choi, Un Cig Ji, Yongdo Lim, Miklós Pálfia","doi":"10.1007/s43037-024-00336-y","DOIUrl":null,"url":null,"abstract":"<p>In this paper, we extend the results for approximation semigroups for general resolvent maps including various resolvents of maps on a general convex geodesic metric space. For our study, we introduce the notion of (general) resolvent maps which is a generalization of the resolvent maps in Lawson (J Lie Theory 33, 361–376, 2023) and then we prove several useful properties for the resolvent map and construct the approximation semigroups for resolvent maps. We also study the convergence of a proximal point like algorithm for the general resolvent map.</p>","PeriodicalId":55400,"journal":{"name":"Banach Journal of Mathematical Analysis","volume":"179 1","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2024-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Approximation semigroups for resolvent maps\",\"authors\":\"Byoung Jin Choi, Un Cig Ji, Yongdo Lim, Miklós Pálfia\",\"doi\":\"10.1007/s43037-024-00336-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this paper, we extend the results for approximation semigroups for general resolvent maps including various resolvents of maps on a general convex geodesic metric space. For our study, we introduce the notion of (general) resolvent maps which is a generalization of the resolvent maps in Lawson (J Lie Theory 33, 361–376, 2023) and then we prove several useful properties for the resolvent map and construct the approximation semigroups for resolvent maps. We also study the convergence of a proximal point like algorithm for the general resolvent map.</p>\",\"PeriodicalId\":55400,\"journal\":{\"name\":\"Banach Journal of Mathematical Analysis\",\"volume\":\"179 1\",\"pages\":\"\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2024-03-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Banach Journal of Mathematical Analysis\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s43037-024-00336-y\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Banach Journal of Mathematical Analysis","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s43037-024-00336-y","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们扩展了一般解析映射的近似半群结果,包括一般凸测地线度量空间上映射的各种解析映射。在研究中,我们引入了(一般)解析映射的概念,它是 Lawson(J Lie Theory 33, 361-376, 2023)中解析映射的一般化,然后我们证明了解析映射的几个有用性质,并构建了解析映射的近似半群。我们还研究了一般解析图的近似点算法的收敛性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Approximation semigroups for resolvent maps

In this paper, we extend the results for approximation semigroups for general resolvent maps including various resolvents of maps on a general convex geodesic metric space. For our study, we introduce the notion of (general) resolvent maps which is a generalization of the resolvent maps in Lawson (J Lie Theory 33, 361–376, 2023) and then we prove several useful properties for the resolvent map and construct the approximation semigroups for resolvent maps. We also study the convergence of a proximal point like algorithm for the general resolvent map.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.00
自引率
8.30%
发文量
67
审稿时长
>12 weeks
期刊介绍: The Banach Journal of Mathematical Analysis (Banach J. Math. Anal.) is published by Birkhäuser on behalf of the Tusi Mathematical Research Group. Banach J. Math. Anal. is a peer-reviewed electronic journal publishing papers of high standards with deep results, new ideas, profound impact, and significant implications in all areas of functional analysis and operator theory and all modern related topics. Banach J. Math. Anal. normally publishes survey articles and original research papers numbering 15 pages or more in the journal’s style. Shorter papers may be submitted to the Annals of Functional Analysis or Advances in Operator Theory.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信