A. Sullivan, C. Power, C. Bottrell, A. Robotham, S. Shabala
{"title":"从广义剖面预测暗物质晕质量与观测值之间的比例关系II:星团内气体发射","authors":"A. Sullivan, C. Power, C. Bottrell, A. Robotham, S. Shabala","doi":"10.1017/pasa.2024.24","DOIUrl":null,"url":null,"abstract":"We investigate the connection between a cluster’s structural configuration and observable measures of its gas emission that can be obtained in X-ray and Sunyaev-Zeldovich (SZ) surveys. We present an analytic model for the intracluster gas density profile: parameterised by the dark matter halo’s inner logarithmic density slope, <jats:italic>α</jats:italic>, the concentration, <jats:italic>c</jats:italic>, the gas profile’s inner logarithmic density slope, <jats:italic>ε</jats:italic>, the dilution, <jats:italic>d</jats:italic>, and the gas fraction, η, normalised to cosmological content. We predict four probes of the gas emission: the emission-weighted, <jats:italic>T</jats:italic><jats:sub>X</jats:sub>, and mean gas mass-weighted, <jats:italic>T</jats:italic><jats:sub>mg</jats:sub>, temperatures, and the spherically, <jats:italic>Y</jats:italic><jats:sub>sph</jats:sub>, and cylindrically, <jats:italic>Y</jats:italic><jats:sub>cyl</jats:sub>, integrated Compton parameters. Over a parameter space of clusters, we constrain the X-ray temperature scaling relations, <jats:italic>M</jats:italic><jats:sub>200</jats:sub> – <jats:italic>T</jats:italic><jats:sub>X</jats:sub> and <jats:italic>M</jats:italic><jats:sub>500</jats:sub> – <jats:italic>T</jats:italic><jats:sub>X</jats:sub>, within 57.3% and 41.6%, and <jats:italic>M</jats:italic><jats:sub>200</jats:sub> – <jats:italic>T</jats:italic><jats:sub>mg</jats:sub> and <jats:italic>M</jats:italic><jats:sub>500</jats:sub> – <jats:italic>T</jats:italic><jats:sub>mg</jats:sub>, within 25.7% and 7.0%, all respectively. When excising the cluster’s core, the <jats:italic>M</jats:italic><jats:sub>200</jats:sub> – <jats:italic>T</jats:italic><jats:sub>X</jats:sub> and <jats:italic>M</jats:italic><jats:sub>500</jats:sub> – <jats:italic>T</jats:italic><jats:sub>X</jats:sub> relations are further constrained, to within 31.3% and 17.1%, respectively. Similarly, we constrain the SZ scaling relations, <jats:italic>M</jats:italic><jats:sub>200</jats:sub> – <jats:italic>Y</jats:italic><jats:sub>sph</jats:sub> and <jats:italic>M</jats:italic><jats:sub>500</jats:sub> – <jats:italic>Y</jats:italic><jats:sub>sph</jats:sub>, within 31.1% and 17.7%, and <jats:italic>M</jats:italic><jats:sub>200</jats:sub> – <jats:italic>Y</jats:italic><jats:sub>cyl</jats:sub> and <jats:italic>M</jats:italic><jats:sub>500</jats:sub> – <jats:italic>Y</jats:italic><jats:sub>cyl</jats:sub>, within 25.2% and 22.0%, all respectively. The temperature observable <jats:italic>T</jats:italic><jats:sub>mg</jats:sub> places the strongest constraint on the halo mass, whilst <jats:italic>T</jats:italic><jats:sub>X</jats:sub> is more sensitive to the parameter space. The SZ constraints are sensitive to the gas fraction, whilst insensitive to the form of the gas profile itself. In all cases, the halo mass is recovered with an uncertainty that suggests the cluster’s structural profiles only contribute a minor uncertainty in its scaling relations.","PeriodicalId":20753,"journal":{"name":"Publications of the Astronomical Society of Australia","volume":"144 1","pages":""},"PeriodicalIF":4.5000,"publicationDate":"2024-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Predicting the Scaling Relations between the Dark Matter Halo Mass and Observables from Generalised Profiles II: Intracluster Gas Emission\",\"authors\":\"A. Sullivan, C. Power, C. Bottrell, A. Robotham, S. Shabala\",\"doi\":\"10.1017/pasa.2024.24\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We investigate the connection between a cluster’s structural configuration and observable measures of its gas emission that can be obtained in X-ray and Sunyaev-Zeldovich (SZ) surveys. We present an analytic model for the intracluster gas density profile: parameterised by the dark matter halo’s inner logarithmic density slope, <jats:italic>α</jats:italic>, the concentration, <jats:italic>c</jats:italic>, the gas profile’s inner logarithmic density slope, <jats:italic>ε</jats:italic>, the dilution, <jats:italic>d</jats:italic>, and the gas fraction, η, normalised to cosmological content. We predict four probes of the gas emission: the emission-weighted, <jats:italic>T</jats:italic><jats:sub>X</jats:sub>, and mean gas mass-weighted, <jats:italic>T</jats:italic><jats:sub>mg</jats:sub>, temperatures, and the spherically, <jats:italic>Y</jats:italic><jats:sub>sph</jats:sub>, and cylindrically, <jats:italic>Y</jats:italic><jats:sub>cyl</jats:sub>, integrated Compton parameters. Over a parameter space of clusters, we constrain the X-ray temperature scaling relations, <jats:italic>M</jats:italic><jats:sub>200</jats:sub> – <jats:italic>T</jats:italic><jats:sub>X</jats:sub> and <jats:italic>M</jats:italic><jats:sub>500</jats:sub> – <jats:italic>T</jats:italic><jats:sub>X</jats:sub>, within 57.3% and 41.6%, and <jats:italic>M</jats:italic><jats:sub>200</jats:sub> – <jats:italic>T</jats:italic><jats:sub>mg</jats:sub> and <jats:italic>M</jats:italic><jats:sub>500</jats:sub> – <jats:italic>T</jats:italic><jats:sub>mg</jats:sub>, within 25.7% and 7.0%, all respectively. When excising the cluster’s core, the <jats:italic>M</jats:italic><jats:sub>200</jats:sub> – <jats:italic>T</jats:italic><jats:sub>X</jats:sub> and <jats:italic>M</jats:italic><jats:sub>500</jats:sub> – <jats:italic>T</jats:italic><jats:sub>X</jats:sub> relations are further constrained, to within 31.3% and 17.1%, respectively. Similarly, we constrain the SZ scaling relations, <jats:italic>M</jats:italic><jats:sub>200</jats:sub> – <jats:italic>Y</jats:italic><jats:sub>sph</jats:sub> and <jats:italic>M</jats:italic><jats:sub>500</jats:sub> – <jats:italic>Y</jats:italic><jats:sub>sph</jats:sub>, within 31.1% and 17.7%, and <jats:italic>M</jats:italic><jats:sub>200</jats:sub> – <jats:italic>Y</jats:italic><jats:sub>cyl</jats:sub> and <jats:italic>M</jats:italic><jats:sub>500</jats:sub> – <jats:italic>Y</jats:italic><jats:sub>cyl</jats:sub>, within 25.2% and 22.0%, all respectively. The temperature observable <jats:italic>T</jats:italic><jats:sub>mg</jats:sub> places the strongest constraint on the halo mass, whilst <jats:italic>T</jats:italic><jats:sub>X</jats:sub> is more sensitive to the parameter space. The SZ constraints are sensitive to the gas fraction, whilst insensitive to the form of the gas profile itself. In all cases, the halo mass is recovered with an uncertainty that suggests the cluster’s structural profiles only contribute a minor uncertainty in its scaling relations.\",\"PeriodicalId\":20753,\"journal\":{\"name\":\"Publications of the Astronomical Society of Australia\",\"volume\":\"144 1\",\"pages\":\"\"},\"PeriodicalIF\":4.5000,\"publicationDate\":\"2024-03-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Publications of the Astronomical Society of Australia\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1017/pasa.2024.24\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ASTRONOMY & ASTROPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Publications of the Astronomical Society of Australia","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1017/pasa.2024.24","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
Predicting the Scaling Relations between the Dark Matter Halo Mass and Observables from Generalised Profiles II: Intracluster Gas Emission
We investigate the connection between a cluster’s structural configuration and observable measures of its gas emission that can be obtained in X-ray and Sunyaev-Zeldovich (SZ) surveys. We present an analytic model for the intracluster gas density profile: parameterised by the dark matter halo’s inner logarithmic density slope, α, the concentration, c, the gas profile’s inner logarithmic density slope, ε, the dilution, d, and the gas fraction, η, normalised to cosmological content. We predict four probes of the gas emission: the emission-weighted, TX, and mean gas mass-weighted, Tmg, temperatures, and the spherically, Ysph, and cylindrically, Ycyl, integrated Compton parameters. Over a parameter space of clusters, we constrain the X-ray temperature scaling relations, M200 – TX and M500 – TX, within 57.3% and 41.6%, and M200 – Tmg and M500 – Tmg, within 25.7% and 7.0%, all respectively. When excising the cluster’s core, the M200 – TX and M500 – TX relations are further constrained, to within 31.3% and 17.1%, respectively. Similarly, we constrain the SZ scaling relations, M200 – Ysph and M500 – Ysph, within 31.1% and 17.7%, and M200 – Ycyl and M500 – Ycyl, within 25.2% and 22.0%, all respectively. The temperature observable Tmg places the strongest constraint on the halo mass, whilst TX is more sensitive to the parameter space. The SZ constraints are sensitive to the gas fraction, whilst insensitive to the form of the gas profile itself. In all cases, the halo mass is recovered with an uncertainty that suggests the cluster’s structural profiles only contribute a minor uncertainty in its scaling relations.
期刊介绍:
Publications of the Astronomical Society of Australia (PASA) publishes new and significant research in astronomy and astrophysics. PASA covers a wide range of topics within astronomy, including multi-wavelength observations, theoretical modelling, computational astronomy and visualisation. PASA also maintains its heritage of publishing results on southern hemisphere astronomy and on astronomy with Australian facilities.
PASA publishes research papers, review papers and special series on topical issues, making use of expert international reviewers and an experienced Editorial Board. As an electronic-only journal, PASA publishes paper by paper, ensuring a rapid publication rate. There are no page charges. PASA''s Editorial Board approve a certain number of papers per year to be published Open Access without a publication fee.