Lunye Sun, Shanliang Shi, Zhenxing Li, Kamlakar P Rajurkar, Yonggang Hou, Peng Hai, Zhaofu Chu, Xianguo Li
{"title":"磁性制冷剂稀土钆的线切割微结构演变和表面质量研究","authors":"Lunye Sun, Shanliang Shi, Zhenxing Li, Kamlakar P Rajurkar, Yonggang Hou, Peng Hai, Zhaofu Chu, Xianguo Li","doi":"10.1088/2051-672x/ad31b4","DOIUrl":null,"url":null,"abstract":"Rare-earth gadolinium (Gd) is preferable for manufacturing regenerators of the core components of room-temperature magnetic refrigeration owing to its unique magnetocaloric and mechanical properties. However, the surface quality of the regenerator plays a crucial role in the heat transfer effect and service life of magnetocaloric systems during wire electrical discharge machining (WEDM) when fabricating rare-earth Gd array microstructure regenerators. In this study, different process parameters were used to conduct a process experiment of the WEDM of rare-earth Gd. First, the evolution of the surface microstructure and its causes were analyzed using a single-factor experiment, while a corrosion test was conducted on the samples. The analysis showed that the pulse-on time and open voltage considerably affected the surface quality of the processed samples, while the samples with better surfaces exhibited good corrosion resistance. Additionally, a Taguchi experiment was designed, and a regression analysis used to establish regression models between the process parameters (pulse-on time, pulse-off time, peak current, open voltage, and water pressure) and both surface roughness (SR) and material removal rate (MRR). The results showed that the average prediction errors of SR and MRR were only 5.34% and 5.48%, respectively.","PeriodicalId":22028,"journal":{"name":"Surface Topography: Metrology and Properties","volume":"34 1","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2024-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Research on microstructure evolution and surface quality of WEDM for magnetic refrigerant rare-earth gadolinium\",\"authors\":\"Lunye Sun, Shanliang Shi, Zhenxing Li, Kamlakar P Rajurkar, Yonggang Hou, Peng Hai, Zhaofu Chu, Xianguo Li\",\"doi\":\"10.1088/2051-672x/ad31b4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Rare-earth gadolinium (Gd) is preferable for manufacturing regenerators of the core components of room-temperature magnetic refrigeration owing to its unique magnetocaloric and mechanical properties. However, the surface quality of the regenerator plays a crucial role in the heat transfer effect and service life of magnetocaloric systems during wire electrical discharge machining (WEDM) when fabricating rare-earth Gd array microstructure regenerators. In this study, different process parameters were used to conduct a process experiment of the WEDM of rare-earth Gd. First, the evolution of the surface microstructure and its causes were analyzed using a single-factor experiment, while a corrosion test was conducted on the samples. The analysis showed that the pulse-on time and open voltage considerably affected the surface quality of the processed samples, while the samples with better surfaces exhibited good corrosion resistance. Additionally, a Taguchi experiment was designed, and a regression analysis used to establish regression models between the process parameters (pulse-on time, pulse-off time, peak current, open voltage, and water pressure) and both surface roughness (SR) and material removal rate (MRR). The results showed that the average prediction errors of SR and MRR were only 5.34% and 5.48%, respectively.\",\"PeriodicalId\":22028,\"journal\":{\"name\":\"Surface Topography: Metrology and Properties\",\"volume\":\"34 1\",\"pages\":\"\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2024-03-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Surface Topography: Metrology and Properties\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1088/2051-672x/ad31b4\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Surface Topography: Metrology and Properties","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1088/2051-672x/ad31b4","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
Research on microstructure evolution and surface quality of WEDM for magnetic refrigerant rare-earth gadolinium
Rare-earth gadolinium (Gd) is preferable for manufacturing regenerators of the core components of room-temperature magnetic refrigeration owing to its unique magnetocaloric and mechanical properties. However, the surface quality of the regenerator plays a crucial role in the heat transfer effect and service life of magnetocaloric systems during wire electrical discharge machining (WEDM) when fabricating rare-earth Gd array microstructure regenerators. In this study, different process parameters were used to conduct a process experiment of the WEDM of rare-earth Gd. First, the evolution of the surface microstructure and its causes were analyzed using a single-factor experiment, while a corrosion test was conducted on the samples. The analysis showed that the pulse-on time and open voltage considerably affected the surface quality of the processed samples, while the samples with better surfaces exhibited good corrosion resistance. Additionally, a Taguchi experiment was designed, and a regression analysis used to establish regression models between the process parameters (pulse-on time, pulse-off time, peak current, open voltage, and water pressure) and both surface roughness (SR) and material removal rate (MRR). The results showed that the average prediction errors of SR and MRR were only 5.34% and 5.48%, respectively.
期刊介绍:
An international forum for academics, industrialists and engineers to publish the latest research in surface topography measurement and characterisation, instrumentation development and the properties of surfaces.