粘性可变的奥森方程优化控制的发散符合 DG 方法

Harpal Singh, Arbaz Khan
{"title":"粘性可变的奥森方程优化控制的发散符合 DG 方法","authors":"Harpal Singh, Arbaz Khan","doi":"arxiv-2403.15783","DOIUrl":null,"url":null,"abstract":"This study introduces the divergence-conforming discontinuous Galerkin finite\nelement method (DGFEM) for numerically approximating optimal control problems\nwith distributed constraints, specifically those governed by stationary\ngeneralized Oseen equations. We provide optimal a priori error estimates in\nenergy norms for such problems using the divergence-conforming DGFEM approach.\nMoreover, we thoroughly analyze $L^2$ error estimates for scenarios dominated\nby diffusion and convection. Additionally, we establish the new reliable and\nefficient a posteriori error estimators for the optimal control of the Oseen\nequation with variable viscosity. Theoretical findings are validated through\nnumerical experiments conducted in both two and three dimensions.","PeriodicalId":501061,"journal":{"name":"arXiv - CS - Numerical Analysis","volume":"47 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-03-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Divergence conforming DG method for the optimal control of the Oseen equation with variable viscosity\",\"authors\":\"Harpal Singh, Arbaz Khan\",\"doi\":\"arxiv-2403.15783\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This study introduces the divergence-conforming discontinuous Galerkin finite\\nelement method (DGFEM) for numerically approximating optimal control problems\\nwith distributed constraints, specifically those governed by stationary\\ngeneralized Oseen equations. We provide optimal a priori error estimates in\\nenergy norms for such problems using the divergence-conforming DGFEM approach.\\nMoreover, we thoroughly analyze $L^2$ error estimates for scenarios dominated\\nby diffusion and convection. Additionally, we establish the new reliable and\\nefficient a posteriori error estimators for the optimal control of the Oseen\\nequation with variable viscosity. Theoretical findings are validated through\\nnumerical experiments conducted in both two and three dimensions.\",\"PeriodicalId\":501061,\"journal\":{\"name\":\"arXiv - CS - Numerical Analysis\",\"volume\":\"47 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-03-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - CS - Numerical Analysis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2403.15783\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Numerical Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2403.15783","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本研究介绍了发散-顺应非连续伽勒金有限元方法(DGFEM),用于对具有分布式约束的最优控制问题进行数值逼近,特别是那些受静态广义奥森方程支配的问题。此外,我们还深入分析了以扩散和对流为主的情况下的 $L^2$ 误差估计。此外,我们还为具有可变粘性的奥塞涅方程的最优控制建立了新的可靠、高效的后验误差估计值。理论研究结果通过二维和三维数值实验得到了验证。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Divergence conforming DG method for the optimal control of the Oseen equation with variable viscosity
This study introduces the divergence-conforming discontinuous Galerkin finite element method (DGFEM) for numerically approximating optimal control problems with distributed constraints, specifically those governed by stationary generalized Oseen equations. We provide optimal a priori error estimates in energy norms for such problems using the divergence-conforming DGFEM approach. Moreover, we thoroughly analyze $L^2$ error estimates for scenarios dominated by diffusion and convection. Additionally, we establish the new reliable and efficient a posteriori error estimators for the optimal control of the Oseen equation with variable viscosity. Theoretical findings are validated through numerical experiments conducted in both two and three dimensions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信