{"title":"具有多个转折点的奇异扰动边界层和内层问题","authors":"Xinyu Wang, Na Wang","doi":"10.1186/s13661-024-01853-3","DOIUrl":null,"url":null,"abstract":"In the study of singularly perturbed boundary problems with turning points, the solution undergoes sharp changes near these points and exhibits various interior phenomena. We employ the matching asymptotic expansion method to analyze and solve a singularly perturbed boundary and interior layers problem with multiple turning points, resulting in a composite expansion that fits well with the numerical solution. The solution demonstrates a strong association with special functions, which is verified by the theory of differential inequalities.","PeriodicalId":49228,"journal":{"name":"Boundary Value Problems","volume":"13 1","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2024-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Singular perturbation boundary and interior layers problems with multiple turning points\",\"authors\":\"Xinyu Wang, Na Wang\",\"doi\":\"10.1186/s13661-024-01853-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the study of singularly perturbed boundary problems with turning points, the solution undergoes sharp changes near these points and exhibits various interior phenomena. We employ the matching asymptotic expansion method to analyze and solve a singularly perturbed boundary and interior layers problem with multiple turning points, resulting in a composite expansion that fits well with the numerical solution. The solution demonstrates a strong association with special functions, which is verified by the theory of differential inequalities.\",\"PeriodicalId\":49228,\"journal\":{\"name\":\"Boundary Value Problems\",\"volume\":\"13 1\",\"pages\":\"\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2024-03-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Boundary Value Problems\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1186/s13661-024-01853-3\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Boundary Value Problems","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1186/s13661-024-01853-3","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Mathematics","Score":null,"Total":0}
Singular perturbation boundary and interior layers problems with multiple turning points
In the study of singularly perturbed boundary problems with turning points, the solution undergoes sharp changes near these points and exhibits various interior phenomena. We employ the matching asymptotic expansion method to analyze and solve a singularly perturbed boundary and interior layers problem with multiple turning points, resulting in a composite expansion that fits well with the numerical solution. The solution demonstrates a strong association with special functions, which is verified by the theory of differential inequalities.
期刊介绍:
The main aim of Boundary Value Problems is to provide a forum to promote, encourage, and bring together various disciplines which use the theory, methods, and applications of boundary value problems. Boundary Value Problems will publish very high quality research articles on boundary value problems for ordinary, functional, difference, elliptic, parabolic, and hyperbolic differential equations. Articles on singular, free, and ill-posed boundary value problems, and other areas of abstract and concrete analysis are welcome. In addition to regular research articles, Boundary Value Problems will publish review articles.