{"title":"涉及可能有负系数的 Sturm-Liouville 微分方程的混合边界值问题","authors":"Gabriele Bonanno, Giuseppina D’Aguì, Valeria Morabito","doi":"10.1186/s13661-024-01848-0","DOIUrl":null,"url":null,"abstract":"This paper is devoted to the study of a mixed boundary value problem for a complete Sturm–Liouville equation, where the coefficients can also be negative. In particular, the existence of infinitely many distinct positive solutions to the given problem is obtained by using critical point theory.","PeriodicalId":49228,"journal":{"name":"Boundary Value Problems","volume":null,"pages":null},"PeriodicalIF":1.7000,"publicationDate":"2024-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Mixed boundary value problems involving Sturm–Liouville differential equations with possibly negative coefficients\",\"authors\":\"Gabriele Bonanno, Giuseppina D’Aguì, Valeria Morabito\",\"doi\":\"10.1186/s13661-024-01848-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper is devoted to the study of a mixed boundary value problem for a complete Sturm–Liouville equation, where the coefficients can also be negative. In particular, the existence of infinitely many distinct positive solutions to the given problem is obtained by using critical point theory.\",\"PeriodicalId\":49228,\"journal\":{\"name\":\"Boundary Value Problems\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2024-03-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Boundary Value Problems\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1186/s13661-024-01848-0\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Boundary Value Problems","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1186/s13661-024-01848-0","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Mathematics","Score":null,"Total":0}
Mixed boundary value problems involving Sturm–Liouville differential equations with possibly negative coefficients
This paper is devoted to the study of a mixed boundary value problem for a complete Sturm–Liouville equation, where the coefficients can also be negative. In particular, the existence of infinitely many distinct positive solutions to the given problem is obtained by using critical point theory.
期刊介绍:
The main aim of Boundary Value Problems is to provide a forum to promote, encourage, and bring together various disciplines which use the theory, methods, and applications of boundary value problems. Boundary Value Problems will publish very high quality research articles on boundary value problems for ordinary, functional, difference, elliptic, parabolic, and hyperbolic differential equations. Articles on singular, free, and ill-posed boundary value problems, and other areas of abstract and concrete analysis are welcome. In addition to regular research articles, Boundary Value Problems will publish review articles.