{"title":"非线性广义粘性布尔格斯方程的时间双网格差分法","authors":"Yang Shi, Xuehua Yang","doi":"10.1007/s10910-024-01592-x","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, we investigate a time two-grid algorithm to get the numerical solution of nonlinear generalized viscous Burgers’ equation, which is the first time that the two-grid method is used to solve this problem. Based on Crank–Nicolson finite difference scheme, we establish the time two-grid difference (TTGD) scheme which consists of three computational procedures to reduce the computational cost compared with the general finite difference (GFD) scheme. The cut-offf function method is applied to prove the conservation, unique solvability, the prior estimate and convergence in <span>\\(L^2\\)</span>-norm and <span>\\(L^{\\infty }\\)</span>-norm of the TTGD scheme on the coarse grid and fine grid, respectively. Comparing our TTGD scheme with GFD scheme in Zhang et al. (Appl Math Lett 112:106719, 2021), we provided the proof the uniqueness the solution of the nonlinear scheme, direct proof of convergence in <span>\\(L^2\\)</span>-norm and the prior estimate both on the coarse mesh and fine mesh. The numerical results show that our TTGD scheme is more efficient than the GDF scheme in Zhang et al. (2021) in terms of the CPU time. Particularly, our method not only improves the efficiency, but also preserves the energy conservation of the original model.</p></div>","PeriodicalId":648,"journal":{"name":"Journal of Mathematical Chemistry","volume":null,"pages":null},"PeriodicalIF":1.7000,"publicationDate":"2024-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A time two-grid difference method for nonlinear generalized viscous Burgers’ equation\",\"authors\":\"Yang Shi, Xuehua Yang\",\"doi\":\"10.1007/s10910-024-01592-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this paper, we investigate a time two-grid algorithm to get the numerical solution of nonlinear generalized viscous Burgers’ equation, which is the first time that the two-grid method is used to solve this problem. Based on Crank–Nicolson finite difference scheme, we establish the time two-grid difference (TTGD) scheme which consists of three computational procedures to reduce the computational cost compared with the general finite difference (GFD) scheme. The cut-offf function method is applied to prove the conservation, unique solvability, the prior estimate and convergence in <span>\\\\(L^2\\\\)</span>-norm and <span>\\\\(L^{\\\\infty }\\\\)</span>-norm of the TTGD scheme on the coarse grid and fine grid, respectively. Comparing our TTGD scheme with GFD scheme in Zhang et al. (Appl Math Lett 112:106719, 2021), we provided the proof the uniqueness the solution of the nonlinear scheme, direct proof of convergence in <span>\\\\(L^2\\\\)</span>-norm and the prior estimate both on the coarse mesh and fine mesh. The numerical results show that our TTGD scheme is more efficient than the GDF scheme in Zhang et al. (2021) in terms of the CPU time. Particularly, our method not only improves the efficiency, but also preserves the energy conservation of the original model.</p></div>\",\"PeriodicalId\":648,\"journal\":{\"name\":\"Journal of Mathematical Chemistry\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2024-03-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Mathematical Chemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10910-024-01592-x\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mathematical Chemistry","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1007/s10910-024-01592-x","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
A time two-grid difference method for nonlinear generalized viscous Burgers’ equation
In this paper, we investigate a time two-grid algorithm to get the numerical solution of nonlinear generalized viscous Burgers’ equation, which is the first time that the two-grid method is used to solve this problem. Based on Crank–Nicolson finite difference scheme, we establish the time two-grid difference (TTGD) scheme which consists of three computational procedures to reduce the computational cost compared with the general finite difference (GFD) scheme. The cut-offf function method is applied to prove the conservation, unique solvability, the prior estimate and convergence in \(L^2\)-norm and \(L^{\infty }\)-norm of the TTGD scheme on the coarse grid and fine grid, respectively. Comparing our TTGD scheme with GFD scheme in Zhang et al. (Appl Math Lett 112:106719, 2021), we provided the proof the uniqueness the solution of the nonlinear scheme, direct proof of convergence in \(L^2\)-norm and the prior estimate both on the coarse mesh and fine mesh. The numerical results show that our TTGD scheme is more efficient than the GDF scheme in Zhang et al. (2021) in terms of the CPU time. Particularly, our method not only improves the efficiency, but also preserves the energy conservation of the original model.
期刊介绍:
The Journal of Mathematical Chemistry (JOMC) publishes original, chemically important mathematical results which use non-routine mathematical methodologies often unfamiliar to the usual audience of mainstream experimental and theoretical chemistry journals. Furthermore JOMC publishes papers on novel applications of more familiar mathematical techniques and analyses of chemical problems which indicate the need for new mathematical approaches.
Mathematical chemistry is a truly interdisciplinary subject, a field of rapidly growing importance. As chemistry becomes more and more amenable to mathematically rigorous study, it is likely that chemistry will also become an alert and demanding consumer of new mathematical results. The level of complexity of chemical problems is often very high, and modeling molecular behaviour and chemical reactions does require new mathematical approaches. Chemistry is witnessing an important shift in emphasis: simplistic models are no longer satisfactory, and more detailed mathematical understanding of complex chemical properties and phenomena are required. From theoretical chemistry and quantum chemistry to applied fields such as molecular modeling, drug design, molecular engineering, and the development of supramolecular structures, mathematical chemistry is an important discipline providing both explanations and predictions. JOMC has an important role in advancing chemistry to an era of detailed understanding of molecules and reactions.