{"title":"钛石膏中的杂质成分对石膏-矿渣胶凝材料凝结时间和力学性能的影响","authors":"Yilin Li, Zhirong Jia, Shuaijun Li, Peiqing Li, Xuekun Jiang, Zhong Zhang, Bin Yu","doi":"10.1515/rams-2024-0005","DOIUrl":null,"url":null,"abstract":"The use of titanium gypsum instead of gypsum as a raw material for the preparation of gypsum-slag cementitious materials (GSCM) can reduce the cost and improve the utilization of solid waste. However, titanium gypsum contains impurities such as Fe<jats:sub>2</jats:sub>O<jats:sub>3</jats:sub>, MgO, and TiO<jats:sub>2</jats:sub>, which make its effect on the performance of GSCM uncertain. To investigate this issue, GSCM doped with different ratios of Fe<jats:sub>2</jats:sub>O<jats:sub>3</jats:sub>, MgO, and TiO<jats:sub>2</jats:sub> were prepared in this study, the setting time and the strength of GSCM at 3, 7, and 28 days were tested. The effects of different oxides on the performance of GSCM were also investigated by scanning electron microscopy, energy spectrum analysis, X-ray diffraction analysis, and thermogravimetric analysis. The experimental results showed that Fe<jats:sub>2</jats:sub>O<jats:sub>3</jats:sub>, MgO, and TiO<jats:sub>2</jats:sub> all had a certain procoagulant effect on GSCM and a slight effect on the strength. Through micro-analysis, it was found that the main hydration products of GSCM were AFt phase and calcium–alumina–silicate–hydrate (C–(A)–S–H) gels. Fe-rich C–(A)–S–H gels were observed with the addition of Fe<jats:sub>2</jats:sub>O<jats:sub>3</jats:sub>, and Mg(OH)<jats:sub>2</jats:sub> and M–S–H gels were observed with the addition of MgO. The addition of TiO<jats:sub>2</jats:sub> did not result in new hydration products from GSCM.","PeriodicalId":54484,"journal":{"name":"Reviews on Advanced Materials Science","volume":"28 1","pages":""},"PeriodicalIF":3.6000,"publicationDate":"2024-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effect of impurity components in titanium gypsum on the setting time and mechanical properties of gypsum-slag cementitious materials\",\"authors\":\"Yilin Li, Zhirong Jia, Shuaijun Li, Peiqing Li, Xuekun Jiang, Zhong Zhang, Bin Yu\",\"doi\":\"10.1515/rams-2024-0005\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The use of titanium gypsum instead of gypsum as a raw material for the preparation of gypsum-slag cementitious materials (GSCM) can reduce the cost and improve the utilization of solid waste. However, titanium gypsum contains impurities such as Fe<jats:sub>2</jats:sub>O<jats:sub>3</jats:sub>, MgO, and TiO<jats:sub>2</jats:sub>, which make its effect on the performance of GSCM uncertain. To investigate this issue, GSCM doped with different ratios of Fe<jats:sub>2</jats:sub>O<jats:sub>3</jats:sub>, MgO, and TiO<jats:sub>2</jats:sub> were prepared in this study, the setting time and the strength of GSCM at 3, 7, and 28 days were tested. The effects of different oxides on the performance of GSCM were also investigated by scanning electron microscopy, energy spectrum analysis, X-ray diffraction analysis, and thermogravimetric analysis. The experimental results showed that Fe<jats:sub>2</jats:sub>O<jats:sub>3</jats:sub>, MgO, and TiO<jats:sub>2</jats:sub> all had a certain procoagulant effect on GSCM and a slight effect on the strength. Through micro-analysis, it was found that the main hydration products of GSCM were AFt phase and calcium–alumina–silicate–hydrate (C–(A)–S–H) gels. Fe-rich C–(A)–S–H gels were observed with the addition of Fe<jats:sub>2</jats:sub>O<jats:sub>3</jats:sub>, and Mg(OH)<jats:sub>2</jats:sub> and M–S–H gels were observed with the addition of MgO. The addition of TiO<jats:sub>2</jats:sub> did not result in new hydration products from GSCM.\",\"PeriodicalId\":54484,\"journal\":{\"name\":\"Reviews on Advanced Materials Science\",\"volume\":\"28 1\",\"pages\":\"\"},\"PeriodicalIF\":3.6000,\"publicationDate\":\"2024-03-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Reviews on Advanced Materials Science\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1515/rams-2024-0005\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Reviews on Advanced Materials Science","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1515/rams-2024-0005","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Effect of impurity components in titanium gypsum on the setting time and mechanical properties of gypsum-slag cementitious materials
The use of titanium gypsum instead of gypsum as a raw material for the preparation of gypsum-slag cementitious materials (GSCM) can reduce the cost and improve the utilization of solid waste. However, titanium gypsum contains impurities such as Fe2O3, MgO, and TiO2, which make its effect on the performance of GSCM uncertain. To investigate this issue, GSCM doped with different ratios of Fe2O3, MgO, and TiO2 were prepared in this study, the setting time and the strength of GSCM at 3, 7, and 28 days were tested. The effects of different oxides on the performance of GSCM were also investigated by scanning electron microscopy, energy spectrum analysis, X-ray diffraction analysis, and thermogravimetric analysis. The experimental results showed that Fe2O3, MgO, and TiO2 all had a certain procoagulant effect on GSCM and a slight effect on the strength. Through micro-analysis, it was found that the main hydration products of GSCM were AFt phase and calcium–alumina–silicate–hydrate (C–(A)–S–H) gels. Fe-rich C–(A)–S–H gels were observed with the addition of Fe2O3, and Mg(OH)2 and M–S–H gels were observed with the addition of MgO. The addition of TiO2 did not result in new hydration products from GSCM.
期刊介绍:
Reviews on Advanced Materials Science is a fully peer-reviewed, open access, electronic journal that publishes significant, original and relevant works in the area of theoretical and experimental studies of advanced materials. The journal provides the readers with free, instant, and permanent access to all content worldwide; and the authors with extensive promotion of published articles, long-time preservation, language-correction services, no space constraints and immediate publication.
Reviews on Advanced Materials Science is listed inter alia by Clarivate Analytics (formerly Thomson Reuters) - Current Contents/Physical, Chemical, and Earth Sciences (CC/PC&ES), JCR and SCIE. Our standard policy requires each paper to be reviewed by at least two Referees and the peer-review process is single-blind.