{"title":"时变高阶结构上的全局同步","authors":"Md Sayeed Anwar, Dibakar Ghosh, Timoteo Carletti","doi":"10.1088/2632-072x/ad3262","DOIUrl":null,"url":null,"abstract":"Synchronization has received a lot of attention from the scientific community for systems evolving on static networks or higher-order structures, such as hypergraphs and simplicial complexes. In many relevant real-world applications, the latter are not static but do evolve in time, in this work we thus discuss the impact of the time-varying nature of higher-order structures in the emergence of global synchronization. To achieve this goal, we extend the master stability formalism to account, in a general way, for the additional contributions arising from the time evolution of the higher-order structure supporting the dynamical systems. The theory is successfully challenged against two illustrative examples, the Stuart–Landau nonlinear oscillator and the Lorenz chaotic oscillator.","PeriodicalId":53211,"journal":{"name":"Journal of Physics Complexity","volume":"69 1","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2024-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Global synchronization on time-varying higher-order structures\",\"authors\":\"Md Sayeed Anwar, Dibakar Ghosh, Timoteo Carletti\",\"doi\":\"10.1088/2632-072x/ad3262\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Synchronization has received a lot of attention from the scientific community for systems evolving on static networks or higher-order structures, such as hypergraphs and simplicial complexes. In many relevant real-world applications, the latter are not static but do evolve in time, in this work we thus discuss the impact of the time-varying nature of higher-order structures in the emergence of global synchronization. To achieve this goal, we extend the master stability formalism to account, in a general way, for the additional contributions arising from the time evolution of the higher-order structure supporting the dynamical systems. The theory is successfully challenged against two illustrative examples, the Stuart–Landau nonlinear oscillator and the Lorenz chaotic oscillator.\",\"PeriodicalId\":53211,\"journal\":{\"name\":\"Journal of Physics Complexity\",\"volume\":\"69 1\",\"pages\":\"\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-03-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Physics Complexity\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1088/2632-072x/ad3262\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Physics Complexity","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/2632-072x/ad3262","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
Global synchronization on time-varying higher-order structures
Synchronization has received a lot of attention from the scientific community for systems evolving on static networks or higher-order structures, such as hypergraphs and simplicial complexes. In many relevant real-world applications, the latter are not static but do evolve in time, in this work we thus discuss the impact of the time-varying nature of higher-order structures in the emergence of global synchronization. To achieve this goal, we extend the master stability formalism to account, in a general way, for the additional contributions arising from the time evolution of the higher-order structure supporting the dynamical systems. The theory is successfully challenged against two illustrative examples, the Stuart–Landau nonlinear oscillator and the Lorenz chaotic oscillator.