铝在海水中的阴极保护

Ole Øystein Knudsen, Eystein Vada, Waldemar Krieger, Jan Bertram, Ivana Jevremovic, Håvard Wilson
{"title":"铝在海水中的阴极保护","authors":"Ole Øystein Knudsen, Eystein Vada, Waldemar Krieger, Jan Bertram, Ivana Jevremovic, Håvard Wilson","doi":"10.1002/maco.202314229","DOIUrl":null,"url":null,"abstract":"Cathodic protection of various 6000 aluminium alloys and variants of EN AW‐5083 in seawater has been studied. The alloys were immersed in seawater and polarized to about −1.06 V versus Ag/AgCl for 1 year. The cathodic current density increased initially due to formation of a copper film on the surface, but the effect was temporary. After 200 days, the current demand for cathodic protection had stabilized on all the investigated alloys at 0 to about 20 mA/m<jats:sup>2</jats:sup>, depending on the Fe/Si ratio in the alloy. Depending on the content of noble intermetallic particles, the aluminium will corrode at a low and constant rate. Application of a coating on the aluminium will decrease the cathodic current demand for cathodic protection significantly. Coatings on submerged aluminium are very stable and not susceptible to degradation mechanisms like cathodic disbonding.","PeriodicalId":18223,"journal":{"name":"Materials and Corrosion","volume":"43 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Cathodic protection of aluminium in seawater\",\"authors\":\"Ole Øystein Knudsen, Eystein Vada, Waldemar Krieger, Jan Bertram, Ivana Jevremovic, Håvard Wilson\",\"doi\":\"10.1002/maco.202314229\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Cathodic protection of various 6000 aluminium alloys and variants of EN AW‐5083 in seawater has been studied. The alloys were immersed in seawater and polarized to about −1.06 V versus Ag/AgCl for 1 year. The cathodic current density increased initially due to formation of a copper film on the surface, but the effect was temporary. After 200 days, the current demand for cathodic protection had stabilized on all the investigated alloys at 0 to about 20 mA/m<jats:sup>2</jats:sup>, depending on the Fe/Si ratio in the alloy. Depending on the content of noble intermetallic particles, the aluminium will corrode at a low and constant rate. Application of a coating on the aluminium will decrease the cathodic current demand for cathodic protection significantly. Coatings on submerged aluminium are very stable and not susceptible to degradation mechanisms like cathodic disbonding.\",\"PeriodicalId\":18223,\"journal\":{\"name\":\"Materials and Corrosion\",\"volume\":\"43 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-03-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials and Corrosion\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1002/maco.202314229\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials and Corrosion","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/maco.202314229","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

研究了各种 6000 铝合金和 EN AW-5083 变体在海水中的阴极保护。将合金浸入海水中,极化至相对于 Ag/AgCl 约 -1.06 V,持续 1 年。最初,由于表面形成了一层铜膜,阴极电流密度有所增加,但这种影响是暂时的。200 天后,所有研究合金的阴极保护电流需求都稳定在 0 到 20 mA/m2 左右,具体取决于合金中的铁/硅比。根据惰性金属间微粒的含量,铝的腐蚀速度较低且稳定。在铝材上涂覆涂层可显著降低阴极保护所需的阴极电流。浸没铝涂层非常稳定,不易受阴极脱粘等降解机制的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Cathodic protection of aluminium in seawater

Cathodic protection of aluminium in seawater
Cathodic protection of various 6000 aluminium alloys and variants of EN AW‐5083 in seawater has been studied. The alloys were immersed in seawater and polarized to about −1.06 V versus Ag/AgCl for 1 year. The cathodic current density increased initially due to formation of a copper film on the surface, but the effect was temporary. After 200 days, the current demand for cathodic protection had stabilized on all the investigated alloys at 0 to about 20 mA/m2, depending on the Fe/Si ratio in the alloy. Depending on the content of noble intermetallic particles, the aluminium will corrode at a low and constant rate. Application of a coating on the aluminium will decrease the cathodic current demand for cathodic protection significantly. Coatings on submerged aluminium are very stable and not susceptible to degradation mechanisms like cathodic disbonding.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信