最优投资的二次展开与半马丁模型的扰动有关

IF 1.1 2区 经济学 Q3 BUSINESS, FINANCE
Oleksii Mostovyi, Mihai Sîrbu
{"title":"最优投资的二次展开与半马丁模型的扰动有关","authors":"Oleksii Mostovyi, Mihai Sîrbu","doi":"10.1007/s00780-024-00532-6","DOIUrl":null,"url":null,"abstract":"<p>We study the response of the optimal investment problem to small changes of the stock price dynamics. Starting with a multidimensional semimartingale setting of an incomplete market, we suppose that the perturbation process is also a general semimartingale. We obtain second-order expansions of the value functions, first-order corrections to the optimisers, and provide the adjustments to the optimal control that match the objective function up to the second order. We also give a characterisation in terms of the risk-tolerance wealth process, if it exists, by reducing the problem to the Kunita–Watanabe decomposition under a change of measure and numéraire. Finally, we illustrate the results by examples of base models that allow closed-form solutions, but where this structure is lost under perturbations of the model where our results allow an approximate solution.</p>","PeriodicalId":50447,"journal":{"name":"Finance and Stochastics","volume":"14 1","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2024-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Quadratic expansions in optimal investment with respect to perturbations of the semimartingale model\",\"authors\":\"Oleksii Mostovyi, Mihai Sîrbu\",\"doi\":\"10.1007/s00780-024-00532-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We study the response of the optimal investment problem to small changes of the stock price dynamics. Starting with a multidimensional semimartingale setting of an incomplete market, we suppose that the perturbation process is also a general semimartingale. We obtain second-order expansions of the value functions, first-order corrections to the optimisers, and provide the adjustments to the optimal control that match the objective function up to the second order. We also give a characterisation in terms of the risk-tolerance wealth process, if it exists, by reducing the problem to the Kunita–Watanabe decomposition under a change of measure and numéraire. Finally, we illustrate the results by examples of base models that allow closed-form solutions, but where this structure is lost under perturbations of the model where our results allow an approximate solution.</p>\",\"PeriodicalId\":50447,\"journal\":{\"name\":\"Finance and Stochastics\",\"volume\":\"14 1\",\"pages\":\"\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2024-03-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Finance and Stochastics\",\"FirstCategoryId\":\"96\",\"ListUrlMain\":\"https://doi.org/10.1007/s00780-024-00532-6\",\"RegionNum\":2,\"RegionCategory\":\"经济学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BUSINESS, FINANCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Finance and Stochastics","FirstCategoryId":"96","ListUrlMain":"https://doi.org/10.1007/s00780-024-00532-6","RegionNum":2,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BUSINESS, FINANCE","Score":null,"Total":0}
引用次数: 0

摘要

我们研究最优投资问题对股票价格动态微小变化的反应。我们从不完全市场的多维半鞅模型出发,假设扰动过程也是一般半鞅模型。我们得到了价值函数的二阶展开、优化器的一阶修正,并提供了与目标函数二阶匹配的最优控制调整。如果存在风险容忍度财富过程,我们也会通过将问题简化为度量和数值变化下的 Kunita-Watanabe 分解,给出风险容忍度财富过程的特征。最后,我们以允许闭式求解的基本模型为例说明了这些结果,但在我们的结果允许近似求解的模型扰动下,这种结构会消失。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Quadratic expansions in optimal investment with respect to perturbations of the semimartingale model

We study the response of the optimal investment problem to small changes of the stock price dynamics. Starting with a multidimensional semimartingale setting of an incomplete market, we suppose that the perturbation process is also a general semimartingale. We obtain second-order expansions of the value functions, first-order corrections to the optimisers, and provide the adjustments to the optimal control that match the objective function up to the second order. We also give a characterisation in terms of the risk-tolerance wealth process, if it exists, by reducing the problem to the Kunita–Watanabe decomposition under a change of measure and numéraire. Finally, we illustrate the results by examples of base models that allow closed-form solutions, but where this structure is lost under perturbations of the model where our results allow an approximate solution.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Finance and Stochastics
Finance and Stochastics 管理科学-数学跨学科应用
CiteScore
2.90
自引率
5.90%
发文量
20
审稿时长
>12 weeks
期刊介绍: The purpose of Finance and Stochastics is to provide a high standard publication forum for research - in all areas of finance based on stochastic methods - on specific topics in mathematics (in particular probability theory, statistics and stochastic analysis) motivated by the analysis of problems in finance. Finance and Stochastics encompasses - but is not limited to - the following fields: - theory and analysis of financial markets - continuous time finance - derivatives research - insurance in relation to finance - portfolio selection - credit and market risks - term structure models - statistical and empirical financial studies based on advanced stochastic methods - numerical and stochastic solution techniques for problems in finance - intertemporal economics, uncertainty and information in relation to finance.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信