非自治线性延迟微分方程的阴影、海尔-乌兰稳定性和双曲性

IF 1.2 2区 数学 Q1 MATHEMATICS
Lucas Backes, Davor Dragičević, Mihály Pituk
{"title":"非自治线性延迟微分方程的阴影、海尔-乌兰稳定性和双曲性","authors":"Lucas Backes, Davor Dragičević, Mihály Pituk","doi":"10.1142/s0219199724500123","DOIUrl":null,"url":null,"abstract":"<p>It is known that hyperbolic nonautonomous linear delay differential equations in a finite dimensional space are Hyers–Ulam stable and hence shadowable. The converse result is available only in the special case of autonomous and periodic linear delay differential equations with a simple spectrum. In this paper, we prove the converse and hence the equivalence of all three notions in the title for a general class of nonautonomous linear delay differential equations with uniformly bounded coefficients. The importance of the boundedness assumption is shown by an example.</p>","PeriodicalId":50660,"journal":{"name":"Communications in Contemporary Mathematics","volume":"39 1","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2024-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Shadowing, Hyers–Ulam stability and hyperbolicity for nonautonomous linear delay differential equations\",\"authors\":\"Lucas Backes, Davor Dragičević, Mihály Pituk\",\"doi\":\"10.1142/s0219199724500123\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>It is known that hyperbolic nonautonomous linear delay differential equations in a finite dimensional space are Hyers–Ulam stable and hence shadowable. The converse result is available only in the special case of autonomous and periodic linear delay differential equations with a simple spectrum. In this paper, we prove the converse and hence the equivalence of all three notions in the title for a general class of nonautonomous linear delay differential equations with uniformly bounded coefficients. The importance of the boundedness assumption is shown by an example.</p>\",\"PeriodicalId\":50660,\"journal\":{\"name\":\"Communications in Contemporary Mathematics\",\"volume\":\"39 1\",\"pages\":\"\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2024-03-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Communications in Contemporary Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1142/s0219199724500123\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications in Contemporary Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1142/s0219199724500123","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

众所周知,有限维空间中的双曲非自治线性延迟微分方程是海尔-乌兰稳定的,因此是可影的。只有在具有简单谱的自洽周期线性延迟微分方程的特殊情况下,才有相反的结果。在本文中,我们证明了反向结果,进而证明了标题中所有三个概念对于一类具有均匀有界系数的非自治线性延迟微分方程的等价性。有界性假设的重要性将通过一个例子来说明。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Shadowing, Hyers–Ulam stability and hyperbolicity for nonautonomous linear delay differential equations

It is known that hyperbolic nonautonomous linear delay differential equations in a finite dimensional space are Hyers–Ulam stable and hence shadowable. The converse result is available only in the special case of autonomous and periodic linear delay differential equations with a simple spectrum. In this paper, we prove the converse and hence the equivalence of all three notions in the title for a general class of nonautonomous linear delay differential equations with uniformly bounded coefficients. The importance of the boundedness assumption is shown by an example.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.90
自引率
6.20%
发文量
78
审稿时长
>12 weeks
期刊介绍: With traditional boundaries between various specialized fields of mathematics becoming less and less visible, Communications in Contemporary Mathematics (CCM) presents the forefront of research in the fields of: Algebra, Analysis, Applied Mathematics, Dynamical Systems, Geometry, Mathematical Physics, Number Theory, Partial Differential Equations and Topology, among others. It provides a forum to stimulate interactions between different areas. Both original research papers and expository articles will be published.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信