Jarek Trela, Jared T. Freiburg, Esteban Gazel, Laurence Nuelle, Anton H. Maria, David H. Malone, John M. Molinarolo
{"title":"希克斯穹顶的灯泡岩、碳酸盐岩和富含重稀土元素的角砾岩之间的岩石学关系","authors":"Jarek Trela, Jared T. Freiburg, Esteban Gazel, Laurence Nuelle, Anton H. Maria, David H. Malone, John M. Molinarolo","doi":"10.1111/ter.12712","DOIUrl":null,"url":null,"abstract":"New petrological, geochemical, and <jats:italic>P</jats:italic>–<jats:italic>T</jats:italic> modelling results from igneous samples clarify how carbonatite‐lamprophyre magmatism, fluorite and rare earth element (REE) enrichment are petrogenetically related in southern Illinois. <jats:italic>P</jats:italic>–<jats:italic>T</jats:italic> modelling reveals that igneous rocks derive from a deep mantle carbonated source, that is consistent with trace element signatures for a fluorine‐rich transition zone origin. Major element systematics suggests liquid‐immiscibility with lamprophyric melts as the origin for Ca‐carbonatites. Heavy REE (HREE) enrichments in Hicks Dome breccias likely formed through preferential partitioning and transport of HREE by brine‐melts, exsolved from a deep carbonatite body. Brine‐melts redistributed HREEs throughout the system along brecciated pathways where they reprecipitated as HREE‐rich phosphate/fluorcarbonate minerals (e.g. xenotime, florencite, synchesite) in host bedrock. The diversity of igneous rocks in southern Illinois highlights the area as an excellent natural laboratory to study carbonated melt petrogenesis and evolution.","PeriodicalId":22260,"journal":{"name":"Terra Nova","volume":"47 1","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2024-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Petrologic relationship between lamprophyres, carbonatites, and heavy rare‐earth element enriched breccias at Hicks Dome\",\"authors\":\"Jarek Trela, Jared T. Freiburg, Esteban Gazel, Laurence Nuelle, Anton H. Maria, David H. Malone, John M. Molinarolo\",\"doi\":\"10.1111/ter.12712\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"New petrological, geochemical, and <jats:italic>P</jats:italic>–<jats:italic>T</jats:italic> modelling results from igneous samples clarify how carbonatite‐lamprophyre magmatism, fluorite and rare earth element (REE) enrichment are petrogenetically related in southern Illinois. <jats:italic>P</jats:italic>–<jats:italic>T</jats:italic> modelling reveals that igneous rocks derive from a deep mantle carbonated source, that is consistent with trace element signatures for a fluorine‐rich transition zone origin. Major element systematics suggests liquid‐immiscibility with lamprophyric melts as the origin for Ca‐carbonatites. Heavy REE (HREE) enrichments in Hicks Dome breccias likely formed through preferential partitioning and transport of HREE by brine‐melts, exsolved from a deep carbonatite body. Brine‐melts redistributed HREEs throughout the system along brecciated pathways where they reprecipitated as HREE‐rich phosphate/fluorcarbonate minerals (e.g. xenotime, florencite, synchesite) in host bedrock. The diversity of igneous rocks in southern Illinois highlights the area as an excellent natural laboratory to study carbonated melt petrogenesis and evolution.\",\"PeriodicalId\":22260,\"journal\":{\"name\":\"Terra Nova\",\"volume\":\"47 1\",\"pages\":\"\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2024-03-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Terra Nova\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1111/ter.12712\",\"RegionNum\":3,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"GEOSCIENCES, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Terra Nova","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1111/ter.12712","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
Petrologic relationship between lamprophyres, carbonatites, and heavy rare‐earth element enriched breccias at Hicks Dome
New petrological, geochemical, and P–T modelling results from igneous samples clarify how carbonatite‐lamprophyre magmatism, fluorite and rare earth element (REE) enrichment are petrogenetically related in southern Illinois. P–T modelling reveals that igneous rocks derive from a deep mantle carbonated source, that is consistent with trace element signatures for a fluorine‐rich transition zone origin. Major element systematics suggests liquid‐immiscibility with lamprophyric melts as the origin for Ca‐carbonatites. Heavy REE (HREE) enrichments in Hicks Dome breccias likely formed through preferential partitioning and transport of HREE by brine‐melts, exsolved from a deep carbonatite body. Brine‐melts redistributed HREEs throughout the system along brecciated pathways where they reprecipitated as HREE‐rich phosphate/fluorcarbonate minerals (e.g. xenotime, florencite, synchesite) in host bedrock. The diversity of igneous rocks in southern Illinois highlights the area as an excellent natural laboratory to study carbonated melt petrogenesis and evolution.
期刊介绍:
Terra Nova publishes short, innovative and provocative papers of interest to a wide readership and covering the broadest spectrum of the Solid Earth and Planetary Sciences. Terra Nova encompasses geology, geophysics and geochemistry, and extends to the fluid envelopes (atmosphere, ocean, environment) whenever coupling with the Solid Earth is involved.