利用时间和时间频谱融合归一化流对存在瞬态噪声的引力波信号进行高效参数推断* * 国家SKA计划(2022SKA0110200、2022SKA0110203)、国家自然科学基金(11975072、11875102、11835009)和国家111计划(B16009)项目资助

IF 3.6 2区 物理与天体物理 Q1 PHYSICS, NUCLEAR
Tian-Yang Sun, Chun-Yu Xiong, Shang-Jie Jin, Yu-Xin Wang, Jing-Fei Zhang, Xin Zhang
{"title":"利用时间和时间频谱融合归一化流对存在瞬态噪声的引力波信号进行高效参数推断* * 国家SKA计划(2022SKA0110200、2022SKA0110203)、国家自然科学基金(11975072、11875102、11835009)和国家111计划(B16009)项目资助","authors":"Tian-Yang Sun, Chun-Yu Xiong, Shang-Jie Jin, Yu-Xin Wang, Jing-Fei Zhang, Xin Zhang","doi":"10.1088/1674-1137/ad2a5f","DOIUrl":null,"url":null,"abstract":"Glitches represent a category of non-Gaussian and transient noise that frequently intersects with gravitational wave (GW) signals, thereby exerting a notable impact on the processing of GW data. The inference of GW parameters, crucial for GW astronomy research, is particularly susceptible to such interference. In this study, we pioneer the utilization of a temporal and time-spectral fusion normalizing flow for likelihood-free inference of GW parameters, seamlessly integrating the high temporal resolution of the time domain with the frequency separation characteristics of both time and frequency domains. Remarkably, our findings indicate that the accuracy of this inference method is comparable to that of traditional non-glitch sampling techniques. Furthermore, our approach exhibits a greater efficiency, boasting processing times on the order of milliseconds. In conclusion, the application of a normalizing flow emerges as pivotal in handling GW signals affected by transient noises, offering a promising avenue for enhancing the field of GW astronomy research.","PeriodicalId":10250,"journal":{"name":"中国物理C","volume":"20 1","pages":""},"PeriodicalIF":3.6000,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Efficient parameter inference for gravitational wave signals in the presence of transient noises using temporal and time-spectral fusion normalizing flow* * Supported by the National SKA Program of China (2022SKA0110200, 2022SKA0110203), the National Natural Science Foundation of China (11975072, 11875102, 11835009), and the National 111 Project (B16009)\",\"authors\":\"Tian-Yang Sun, Chun-Yu Xiong, Shang-Jie Jin, Yu-Xin Wang, Jing-Fei Zhang, Xin Zhang\",\"doi\":\"10.1088/1674-1137/ad2a5f\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Glitches represent a category of non-Gaussian and transient noise that frequently intersects with gravitational wave (GW) signals, thereby exerting a notable impact on the processing of GW data. The inference of GW parameters, crucial for GW astronomy research, is particularly susceptible to such interference. In this study, we pioneer the utilization of a temporal and time-spectral fusion normalizing flow for likelihood-free inference of GW parameters, seamlessly integrating the high temporal resolution of the time domain with the frequency separation characteristics of both time and frequency domains. Remarkably, our findings indicate that the accuracy of this inference method is comparable to that of traditional non-glitch sampling techniques. Furthermore, our approach exhibits a greater efficiency, boasting processing times on the order of milliseconds. In conclusion, the application of a normalizing flow emerges as pivotal in handling GW signals affected by transient noises, offering a promising avenue for enhancing the field of GW astronomy research.\",\"PeriodicalId\":10250,\"journal\":{\"name\":\"中国物理C\",\"volume\":\"20 1\",\"pages\":\"\"},\"PeriodicalIF\":3.6000,\"publicationDate\":\"2024-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"中国物理C\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1088/1674-1137/ad2a5f\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHYSICS, NUCLEAR\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"中国物理C","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1088/1674-1137/ad2a5f","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, NUCLEAR","Score":null,"Total":0}
引用次数: 0

摘要

闪烁是一类非高斯和瞬态噪声,经常与引力波(GW)信号相交,从而对引力波数据的处理产生显著影响。对引力波天文学研究至关重要的引力波参数推断尤其容易受到这种干扰的影响。在本研究中,我们开创性地利用时域和时谱融合归一化流程进行无似然推断 GW 参数,将时域的高时间分辨率与时域和频域的频率分离特性无缝集成。值得注意的是,我们的研究结果表明,这种推断方法的准确性与传统的非斑点采样技术相当。此外,我们的方法效率更高,处理时间仅为毫秒级。总之,归一化流的应用在处理受瞬态噪声影响的全球大气观测信号中至关重要,为加强全球大气观测天文学研究领域提供了一条前景广阔的途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Efficient parameter inference for gravitational wave signals in the presence of transient noises using temporal and time-spectral fusion normalizing flow* * Supported by the National SKA Program of China (2022SKA0110200, 2022SKA0110203), the National Natural Science Foundation of China (11975072, 11875102, 11835009), and the National 111 Project (B16009)
Glitches represent a category of non-Gaussian and transient noise that frequently intersects with gravitational wave (GW) signals, thereby exerting a notable impact on the processing of GW data. The inference of GW parameters, crucial for GW astronomy research, is particularly susceptible to such interference. In this study, we pioneer the utilization of a temporal and time-spectral fusion normalizing flow for likelihood-free inference of GW parameters, seamlessly integrating the high temporal resolution of the time domain with the frequency separation characteristics of both time and frequency domains. Remarkably, our findings indicate that the accuracy of this inference method is comparable to that of traditional non-glitch sampling techniques. Furthermore, our approach exhibits a greater efficiency, boasting processing times on the order of milliseconds. In conclusion, the application of a normalizing flow emerges as pivotal in handling GW signals affected by transient noises, offering a promising avenue for enhancing the field of GW astronomy research.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
中国物理C
中国物理C 物理-物理:核物理
CiteScore
6.50
自引率
8.30%
发文量
8976
审稿时长
1.3 months
期刊介绍: Chinese Physics C covers the latest developments and achievements in the theory, experiment and applications of: Particle physics; Nuclear physics; Particle and nuclear astrophysics; Cosmology; Accelerator physics. The journal publishes original research papers, letters and reviews. The Letters section covers short reports on the latest important scientific results, published as quickly as possible. Such breakthrough research articles are a high priority for publication. The Editorial Board is composed of about fifty distinguished physicists, who are responsible for the review of submitted papers and who ensure the scientific quality of the journal. The journal has been awarded the Chinese Academy of Sciences ‘Excellent Journal’ award multiple times, and is recognized as one of China''s top one hundred key scientific periodicals by the General Administration of News and Publications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信