离散群广义群代数双元中的湮没器

Pub Date : 2024-03-27 DOI:10.1007/s11785-024-01506-4
Lav Kumar Singh
{"title":"离散群广义群代数双元中的湮没器","authors":"Lav Kumar Singh","doi":"10.1007/s11785-024-01506-4","DOIUrl":null,"url":null,"abstract":"<p>In this short note, the second dual of generalized group algebra <span>\\((\\ell ^1(G,\\mathcal {A}),*)\\)</span> equipped with both Arens product is investigated, where <i>G</i> is any discrete group and <span>\\(\\mathcal {A}\\)</span> is a Banach algebra containing a complemented algebraic copy of <span>\\((\\ell ^1(\\mathbb N),\\bullet )\\)</span>. We give an explicit family of annihilators(w.r.t both the Arens product) in the algebra <span>\\(\\ell ^1(G,\\mathcal {A})^{**}\\)</span>, arising from non-principal ultrafilters on <span>\\({\\mathbb {N}}\\)</span> and which are not in the toplogical center. As a consequence, we also deduce the fact that <span>\\(\\ell ^1(G,\\mathcal {A})\\)</span> is not Strongly Arens irregular.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Annihilators in the Bidual of the Generalized Group Algebra of a Discrete Group\",\"authors\":\"Lav Kumar Singh\",\"doi\":\"10.1007/s11785-024-01506-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this short note, the second dual of generalized group algebra <span>\\\\((\\\\ell ^1(G,\\\\mathcal {A}),*)\\\\)</span> equipped with both Arens product is investigated, where <i>G</i> is any discrete group and <span>\\\\(\\\\mathcal {A}\\\\)</span> is a Banach algebra containing a complemented algebraic copy of <span>\\\\((\\\\ell ^1(\\\\mathbb N),\\\\bullet )\\\\)</span>. We give an explicit family of annihilators(w.r.t both the Arens product) in the algebra <span>\\\\(\\\\ell ^1(G,\\\\mathcal {A})^{**}\\\\)</span>, arising from non-principal ultrafilters on <span>\\\\({\\\\mathbb {N}}\\\\)</span> and which are not in the toplogical center. As a consequence, we also deduce the fact that <span>\\\\(\\\\ell ^1(G,\\\\mathcal {A})\\\\)</span> is not Strongly Arens irregular.</p>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-03-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s11785-024-01506-4\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s11785-024-01506-4","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在这篇短文中,我们研究了广义群代数((\ell ^1(G,\mathcal {A}),*))的第二个对偶,它同时具有阿伦积,其中 G 是任意离散群,\(\mathcal {A}\)是一个巴拿赫代数,包含 \((\ell ^1(\mathbb N),\bullet )\) 的一个补代数副本。我们给出了代数 \(\ell ^1(G,\mathcal {A})^{***}\)中由 \({\mathbb {N}}\)上的非主超滤波器产生的、不在顶点逻辑中心的湮没器(与阿伦积)的显式族。因此,我们还推导出了\(\ell ^1(G,\mathcal {A})\)不是强阿伦无规则的事实。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Annihilators in the Bidual of the Generalized Group Algebra of a Discrete Group

In this short note, the second dual of generalized group algebra \((\ell ^1(G,\mathcal {A}),*)\) equipped with both Arens product is investigated, where G is any discrete group and \(\mathcal {A}\) is a Banach algebra containing a complemented algebraic copy of \((\ell ^1(\mathbb N),\bullet )\). We give an explicit family of annihilators(w.r.t both the Arens product) in the algebra \(\ell ^1(G,\mathcal {A})^{**}\), arising from non-principal ultrafilters on \({\mathbb {N}}\) and which are not in the toplogical center. As a consequence, we also deduce the fact that \(\ell ^1(G,\mathcal {A})\) is not Strongly Arens irregular.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信