西尔平斯基网络的最短路径距离和哈斯道夫维度

Fractals Pub Date : 2024-03-26 DOI:10.1142/s0218348x24500567
JIAQI FAN, JIAJUN XU, LIFENG XI
{"title":"西尔平斯基网络的最短路径距离和哈斯道夫维度","authors":"JIAQI FAN, JIAJUN XU, LIFENG XI","doi":"10.1142/s0218348x24500567","DOIUrl":null,"url":null,"abstract":"<p>In this paper, we will study the geometric structure on the Sierpinski networks which are skeleton networks of a connected self-similar Sierpinski carpet. Under some suitable condition, we figure out that the renormalized shortest path distance is comparable to the planar Manhattan distance, and obtain the Hausdorff dimension of Sierpinski networks.</p>","PeriodicalId":501262,"journal":{"name":"Fractals","volume":"27 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"SHORTEST PATH DISTANCE AND HAUSDORFF DIMENSION OF SIERPINSKI NETWORKS\",\"authors\":\"JIAQI FAN, JIAJUN XU, LIFENG XI\",\"doi\":\"10.1142/s0218348x24500567\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this paper, we will study the geometric structure on the Sierpinski networks which are skeleton networks of a connected self-similar Sierpinski carpet. Under some suitable condition, we figure out that the renormalized shortest path distance is comparable to the planar Manhattan distance, and obtain the Hausdorff dimension of Sierpinski networks.</p>\",\"PeriodicalId\":501262,\"journal\":{\"name\":\"Fractals\",\"volume\":\"27 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-03-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Fractals\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1142/s0218348x24500567\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fractals","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/s0218348x24500567","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文将研究西尔平斯基网络的几何结构,西尔平斯基网络是连通自相似西尔平斯基地毯的骨架网络。在一些合适的条件下,我们发现重归一化最短路径距离与平面曼哈顿距离相当,并得到了 Sierpinski 网络的豪斯多夫维。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
SHORTEST PATH DISTANCE AND HAUSDORFF DIMENSION OF SIERPINSKI NETWORKS

In this paper, we will study the geometric structure on the Sierpinski networks which are skeleton networks of a connected self-similar Sierpinski carpet. Under some suitable condition, we figure out that the renormalized shortest path distance is comparable to the planar Manhattan distance, and obtain the Hausdorff dimension of Sierpinski networks.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信