利用内存进行四元曼德尔布罗特集的 3D 渲染

Fractals Pub Date : 2024-03-27 DOI:10.1142/s0218348x24500610
RICARDO FARIELLO, PAUL BOURKE, GABRIEL V. S. ABREU
{"title":"利用内存进行四元曼德尔布罗特集的 3D 渲染","authors":"RICARDO FARIELLO, PAUL BOURKE, GABRIEL V. S. ABREU","doi":"10.1142/s0218348x24500610","DOIUrl":null,"url":null,"abstract":"<p>In this paper, we explore the quaternion equivalent of the Mandelbrot set equipped with memory and apply various visualization techniques to the resulting <span><math altimg=\"eq-00002.gif\" display=\"inline\" overflow=\"scroll\"><mn>4</mn></math></span><span></span>-dimensional geometry. Three memory functions have been considered, two that apply a weighted sum to only the previous two terms and one that performs a weighted sum of all previous terms of the series. The visualization includes one or two cutting planes for dimensional reduction to either <span><math altimg=\"eq-00003.gif\" display=\"inline\" overflow=\"scroll\"><mn>3</mn></math></span><span></span> or <span><math altimg=\"eq-00004.gif\" display=\"inline\" overflow=\"scroll\"><mn>2</mn></math></span><span></span> dimensions, respectively, as well as employing an intersection with a half space to trim the <span><math altimg=\"eq-00005.gif\" display=\"inline\" overflow=\"scroll\"><mn>3</mn></math></span><span></span>D solids in order to reveal the interiors. Using various metrics, we quantify the effect of each memory function on the structure of the quaternion Mandelbrot set.</p>","PeriodicalId":501262,"journal":{"name":"Fractals","volume":"45 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"3D RENDERING OF THE QUATERNION MANDELBROT SET WITH MEMORY\",\"authors\":\"RICARDO FARIELLO, PAUL BOURKE, GABRIEL V. S. ABREU\",\"doi\":\"10.1142/s0218348x24500610\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this paper, we explore the quaternion equivalent of the Mandelbrot set equipped with memory and apply various visualization techniques to the resulting <span><math altimg=\\\"eq-00002.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mn>4</mn></math></span><span></span>-dimensional geometry. Three memory functions have been considered, two that apply a weighted sum to only the previous two terms and one that performs a weighted sum of all previous terms of the series. The visualization includes one or two cutting planes for dimensional reduction to either <span><math altimg=\\\"eq-00003.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mn>3</mn></math></span><span></span> or <span><math altimg=\\\"eq-00004.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mn>2</mn></math></span><span></span> dimensions, respectively, as well as employing an intersection with a half space to trim the <span><math altimg=\\\"eq-00005.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mn>3</mn></math></span><span></span>D solids in order to reveal the interiors. Using various metrics, we quantify the effect of each memory function on the structure of the quaternion Mandelbrot set.</p>\",\"PeriodicalId\":501262,\"journal\":{\"name\":\"Fractals\",\"volume\":\"45 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-03-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Fractals\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1142/s0218348x24500610\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fractals","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/s0218348x24500610","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们探索了配备记忆功能的曼德勃罗四元数集,并将各种可视化技术应用于由此产生的四维几何图形。我们考虑了三种记忆函数,其中两种只对前两项进行加权求和,另一种对数列的所有前项进行加权求和。可视化包括一个或两个切割平面,分别用于将维度缩减到三维或二维,以及采用与半空间的交点来修剪三维实体,以显示内部结构。我们使用各种指标量化了每个记忆函数对四元曼德尔布罗特集结构的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
3D RENDERING OF THE QUATERNION MANDELBROT SET WITH MEMORY

In this paper, we explore the quaternion equivalent of the Mandelbrot set equipped with memory and apply various visualization techniques to the resulting 4-dimensional geometry. Three memory functions have been considered, two that apply a weighted sum to only the previous two terms and one that performs a weighted sum of all previous terms of the series. The visualization includes one or two cutting planes for dimensional reduction to either 3 or 2 dimensions, respectively, as well as employing an intersection with a half space to trim the 3D solids in order to reveal the interiors. Using various metrics, we quantify the effect of each memory function on the structure of the quaternion Mandelbrot set.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信