Kamal Khalil, Valentina Lanza, David Manceau, M. A. Aziz-Alaoui, Damienne Provitolo
{"title":"分析灾难事件中人类行为的时空平流扩散模型","authors":"Kamal Khalil, Valentina Lanza, David Manceau, M. A. Aziz-Alaoui, Damienne Provitolo","doi":"10.1142/s0218202524500234","DOIUrl":null,"url":null,"abstract":"<p>In this work, using the theory of first-order macroscopic crowd models, we introduce a compartmental advection–diffusion model, describing the spatio-temporal dynamics of a population in different human behaviors (alert, panic and control) during a catastrophic event. For this model, we prove the local existence, uniqueness and regularity of a solution, as well as the positivity and <span><math altimg=\"eq-00001.gif\" display=\"inline\" overflow=\"scroll\"><msup><mrow><mi>L</mi></mrow><mrow><mn>1</mn></mrow></msup></math></span><span></span>-boundedness of this solution. Then, in order to study the spatio-temporal propagation of these behavioral reactions within a population during a catastrophic event, we present several numerical simulations for different evacuation scenarios.</p>","PeriodicalId":18311,"journal":{"name":"Mathematical Models and Methods in Applied Sciences","volume":"45 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Analysis of a spatio-temporal advection-diffusion model for human behaviors during a catastrophic event\",\"authors\":\"Kamal Khalil, Valentina Lanza, David Manceau, M. A. Aziz-Alaoui, Damienne Provitolo\",\"doi\":\"10.1142/s0218202524500234\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this work, using the theory of first-order macroscopic crowd models, we introduce a compartmental advection–diffusion model, describing the spatio-temporal dynamics of a population in different human behaviors (alert, panic and control) during a catastrophic event. For this model, we prove the local existence, uniqueness and regularity of a solution, as well as the positivity and <span><math altimg=\\\"eq-00001.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><msup><mrow><mi>L</mi></mrow><mrow><mn>1</mn></mrow></msup></math></span><span></span>-boundedness of this solution. Then, in order to study the spatio-temporal propagation of these behavioral reactions within a population during a catastrophic event, we present several numerical simulations for different evacuation scenarios.</p>\",\"PeriodicalId\":18311,\"journal\":{\"name\":\"Mathematical Models and Methods in Applied Sciences\",\"volume\":\"45 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-03-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematical Models and Methods in Applied Sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1142/s0218202524500234\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical Models and Methods in Applied Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/s0218202524500234","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Analysis of a spatio-temporal advection-diffusion model for human behaviors during a catastrophic event
In this work, using the theory of first-order macroscopic crowd models, we introduce a compartmental advection–diffusion model, describing the spatio-temporal dynamics of a population in different human behaviors (alert, panic and control) during a catastrophic event. For this model, we prove the local existence, uniqueness and regularity of a solution, as well as the positivity and -boundedness of this solution. Then, in order to study the spatio-temporal propagation of these behavioral reactions within a population during a catastrophic event, we present several numerical simulations for different evacuation scenarios.