分析灾难事件中人类行为的时空平流扩散模型

Kamal Khalil, Valentina Lanza, David Manceau, M. A. Aziz-Alaoui, Damienne Provitolo
{"title":"分析灾难事件中人类行为的时空平流扩散模型","authors":"Kamal Khalil, Valentina Lanza, David Manceau, M. A. Aziz-Alaoui, Damienne Provitolo","doi":"10.1142/s0218202524500234","DOIUrl":null,"url":null,"abstract":"<p>In this work, using the theory of first-order macroscopic crowd models, we introduce a compartmental advection–diffusion model, describing the spatio-temporal dynamics of a population in different human behaviors (alert, panic and control) during a catastrophic event. For this model, we prove the local existence, uniqueness and regularity of a solution, as well as the positivity and <span><math altimg=\"eq-00001.gif\" display=\"inline\" overflow=\"scroll\"><msup><mrow><mi>L</mi></mrow><mrow><mn>1</mn></mrow></msup></math></span><span></span>-boundedness of this solution. Then, in order to study the spatio-temporal propagation of these behavioral reactions within a population during a catastrophic event, we present several numerical simulations for different evacuation scenarios.</p>","PeriodicalId":18311,"journal":{"name":"Mathematical Models and Methods in Applied Sciences","volume":"45 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Analysis of a spatio-temporal advection-diffusion model for human behaviors during a catastrophic event\",\"authors\":\"Kamal Khalil, Valentina Lanza, David Manceau, M. A. Aziz-Alaoui, Damienne Provitolo\",\"doi\":\"10.1142/s0218202524500234\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this work, using the theory of first-order macroscopic crowd models, we introduce a compartmental advection–diffusion model, describing the spatio-temporal dynamics of a population in different human behaviors (alert, panic and control) during a catastrophic event. For this model, we prove the local existence, uniqueness and regularity of a solution, as well as the positivity and <span><math altimg=\\\"eq-00001.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><msup><mrow><mi>L</mi></mrow><mrow><mn>1</mn></mrow></msup></math></span><span></span>-boundedness of this solution. Then, in order to study the spatio-temporal propagation of these behavioral reactions within a population during a catastrophic event, we present several numerical simulations for different evacuation scenarios.</p>\",\"PeriodicalId\":18311,\"journal\":{\"name\":\"Mathematical Models and Methods in Applied Sciences\",\"volume\":\"45 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-03-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematical Models and Methods in Applied Sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1142/s0218202524500234\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical Models and Methods in Applied Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/s0218202524500234","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在这项研究中,我们利用一阶宏观人群模型理论,引入了一个分区平流-扩散模型,描述了灾难性事件中不同人类行为(警戒、恐慌和控制)的人群时空动态。对于该模型,我们证明了解的局部存在性、唯一性和正则性,以及该解的正向性和 L1 边界性。然后,为了研究灾难性事件中这些行为反应在人群中的时空传播,我们针对不同的疏散场景进行了多次数值模拟。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Analysis of a spatio-temporal advection-diffusion model for human behaviors during a catastrophic event

In this work, using the theory of first-order macroscopic crowd models, we introduce a compartmental advection–diffusion model, describing the spatio-temporal dynamics of a population in different human behaviors (alert, panic and control) during a catastrophic event. For this model, we prove the local existence, uniqueness and regularity of a solution, as well as the positivity and L1-boundedness of this solution. Then, in order to study the spatio-temporal propagation of these behavioral reactions within a population during a catastrophic event, we present several numerical simulations for different evacuation scenarios.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信