GraphIdx:加速图数据挖掘的高效索引技术

IF 1.3 Q3 COMPUTER SCIENCE, SOFTWARE ENGINEERING
Mostofa Kamal Rasel, Mohammad Rezwanul Huq, Mohammad Arifuzzaman
{"title":"GraphIdx:加速图数据挖掘的高效索引技术","authors":"Mostofa Kamal Rasel,&nbsp;Mohammad Rezwanul Huq,&nbsp;Mohammad Arifuzzaman","doi":"10.1016/j.simpa.2024.100632","DOIUrl":null,"url":null,"abstract":"<div><p>Many graph mining algorithms process large graphs with several passes and suffers from huge I/O cost. GraphIdx, an open-source C library, facilitates a memory-efficient indexing of large graphs to reduce that I/O cost. GraphIdx indexes a block of graph data for a set of nodes based on the empirical evaluation of edges. Due to the indexed graph, graph mining algorithms can access and process only the related nodes and their edges instead of scanning entire graph. As a result, the number of I/Os is significantly reduced. Moreover, GraphIdx accredited algorithms can process graphs in parallel due to the indexed data.</p></div>","PeriodicalId":29771,"journal":{"name":"Software Impacts","volume":"20 ","pages":"Article 100632"},"PeriodicalIF":1.3000,"publicationDate":"2024-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2665963824000204/pdfft?md5=1f5c30286b7c1be0b0b30cc7644c0f53&pid=1-s2.0-S2665963824000204-main.pdf","citationCount":"0","resultStr":"{\"title\":\"GraphIdx: An efficient indexing technique for accelerating graph data mining\",\"authors\":\"Mostofa Kamal Rasel,&nbsp;Mohammad Rezwanul Huq,&nbsp;Mohammad Arifuzzaman\",\"doi\":\"10.1016/j.simpa.2024.100632\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Many graph mining algorithms process large graphs with several passes and suffers from huge I/O cost. GraphIdx, an open-source C library, facilitates a memory-efficient indexing of large graphs to reduce that I/O cost. GraphIdx indexes a block of graph data for a set of nodes based on the empirical evaluation of edges. Due to the indexed graph, graph mining algorithms can access and process only the related nodes and their edges instead of scanning entire graph. As a result, the number of I/Os is significantly reduced. Moreover, GraphIdx accredited algorithms can process graphs in parallel due to the indexed data.</p></div>\",\"PeriodicalId\":29771,\"journal\":{\"name\":\"Software Impacts\",\"volume\":\"20 \",\"pages\":\"Article 100632\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2024-03-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2665963824000204/pdfft?md5=1f5c30286b7c1be0b0b30cc7644c0f53&pid=1-s2.0-S2665963824000204-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Software Impacts\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2665963824000204\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, SOFTWARE ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Software Impacts","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2665963824000204","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
引用次数: 0

摘要

许多图形挖掘算法在处理大型图形时都要经过多次处理,因此会产生巨大的 I/O 成本。GraphIdx 是一个开源 C 语言库,它有助于对大型图进行内存高效索引,从而降低 I/O 成本。GraphIdx 基于对边的经验评估,为一组节点的图数据块建立索引。有了索引图,图挖掘算法可以只访问和处理相关节点及其边,而无需扫描整个图。因此,I/O 数量大大减少。此外,由于有了索引数据,GraphIdx 认证算法可以并行处理图形。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

GraphIdx: An efficient indexing technique for accelerating graph data mining

GraphIdx: An efficient indexing technique for accelerating graph data mining

Many graph mining algorithms process large graphs with several passes and suffers from huge I/O cost. GraphIdx, an open-source C library, facilitates a memory-efficient indexing of large graphs to reduce that I/O cost. GraphIdx indexes a block of graph data for a set of nodes based on the empirical evaluation of edges. Due to the indexed graph, graph mining algorithms can access and process only the related nodes and their edges instead of scanning entire graph. As a result, the number of I/Os is significantly reduced. Moreover, GraphIdx accredited algorithms can process graphs in parallel due to the indexed data.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Software Impacts
Software Impacts Software
CiteScore
2.70
自引率
9.50%
发文量
0
审稿时长
16 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信