ChatDiet:通过 LLM 增强框架增强以营养为导向的个性化食品推荐聊天机器人的能力

Q2 Health Professions
Zhongqi Yang , Elahe Khatibi , Nitish Nagesh , Mahyar Abbasian , Iman Azimi , Ramesh Jain , Amir M. Rahmani
{"title":"ChatDiet:通过 LLM 增强框架增强以营养为导向的个性化食品推荐聊天机器人的能力","authors":"Zhongqi Yang ,&nbsp;Elahe Khatibi ,&nbsp;Nitish Nagesh ,&nbsp;Mahyar Abbasian ,&nbsp;Iman Azimi ,&nbsp;Ramesh Jain ,&nbsp;Amir M. Rahmani","doi":"10.1016/j.smhl.2024.100465","DOIUrl":null,"url":null,"abstract":"<div><p>The profound impact of food on health necessitates advanced nutrition-oriented food recommendation services. Conventional methods often lack the crucial elements of personalization, explainability, and interactivity. While Large Language Models (LLMs) bring interpretability and explainability, their standalone use falls short of achieving true personalization. In this paper, we introduce ChatDiet, a novel LLM-powered framework designed specifically for personalized nutrition-oriented food recommendation chatbots. ChatDiet integrates personal and population models, complemented by an orchestrator, to seamlessly retrieve and process pertinent information. The personal model leverages causal discovery and inference techniques to assess personalized nutritional effects for a specific user, whereas the population model provides generalized information on food nutritional content. The orchestrator retrieves, synergizes and delivers the output of both models to the LLM, providing tailored food recommendations designed to support targeted health outcomes. The result is a dynamic delivery of personalized and explainable food recommendations, tailored to individual user preferences. Our evaluation of ChatDiet includes a compelling case study, where we establish a causal personal model to estimate individual nutrition effects. Our assessments, including a food recommendation test showcasing a 92<span><math><mtext>%</mtext></math></span> effectiveness rate, coupled with illustrative dialogue examples, underscore ChatDiet’s strengths in explainability, personalization, and interactivity.</p></div>","PeriodicalId":37151,"journal":{"name":"Smart Health","volume":"32 ","pages":"Article 100465"},"PeriodicalIF":0.0000,"publicationDate":"2024-03-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2352648324000217/pdfft?md5=a7d3359763fd8d1a7e233cdecf118a1b&pid=1-s2.0-S2352648324000217-main.pdf","citationCount":"0","resultStr":"{\"title\":\"ChatDiet: Empowering personalized nutrition-oriented food recommender chatbots through an LLM-augmented framework\",\"authors\":\"Zhongqi Yang ,&nbsp;Elahe Khatibi ,&nbsp;Nitish Nagesh ,&nbsp;Mahyar Abbasian ,&nbsp;Iman Azimi ,&nbsp;Ramesh Jain ,&nbsp;Amir M. Rahmani\",\"doi\":\"10.1016/j.smhl.2024.100465\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The profound impact of food on health necessitates advanced nutrition-oriented food recommendation services. Conventional methods often lack the crucial elements of personalization, explainability, and interactivity. While Large Language Models (LLMs) bring interpretability and explainability, their standalone use falls short of achieving true personalization. In this paper, we introduce ChatDiet, a novel LLM-powered framework designed specifically for personalized nutrition-oriented food recommendation chatbots. ChatDiet integrates personal and population models, complemented by an orchestrator, to seamlessly retrieve and process pertinent information. The personal model leverages causal discovery and inference techniques to assess personalized nutritional effects for a specific user, whereas the population model provides generalized information on food nutritional content. The orchestrator retrieves, synergizes and delivers the output of both models to the LLM, providing tailored food recommendations designed to support targeted health outcomes. The result is a dynamic delivery of personalized and explainable food recommendations, tailored to individual user preferences. Our evaluation of ChatDiet includes a compelling case study, where we establish a causal personal model to estimate individual nutrition effects. Our assessments, including a food recommendation test showcasing a 92<span><math><mtext>%</mtext></math></span> effectiveness rate, coupled with illustrative dialogue examples, underscore ChatDiet’s strengths in explainability, personalization, and interactivity.</p></div>\",\"PeriodicalId\":37151,\"journal\":{\"name\":\"Smart Health\",\"volume\":\"32 \",\"pages\":\"Article 100465\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-03-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2352648324000217/pdfft?md5=a7d3359763fd8d1a7e233cdecf118a1b&pid=1-s2.0-S2352648324000217-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Smart Health\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2352648324000217\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Health Professions\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Smart Health","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352648324000217","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Health Professions","Score":null,"Total":0}
引用次数: 0

摘要

食物对健康影响深远,因此需要先进的营养导向型食物推荐服务。传统方法往往缺乏个性化、可解释性和互动性等关键要素。虽然大语言模型(LLM)带来了可解释性和可说明性,但单独使用它们却无法实现真正的个性化。在本文中,我们介绍了 ChatDiet,这是一个由 LLM 驱动的新型框架,专为面向营养的个性化食物推荐聊天机器人而设计。ChatDiet 整合了个人和群体模型,并辅以协调器,以无缝检索和处理相关信息。个人模型利用因果发现和推理技术评估特定用户的个性化营养效果,而群体模型则提供有关食物营养成分的通用信息。协调器检索、协同并向 LLM 提供这两个模型的输出结果,提供量身定制的食品建议,以支持目标健康结果。其结果是根据个人用户的偏好动态提供个性化和可解释的食物建议。我们对 ChatDiet 的评估包括一项引人注目的案例研究,我们建立了一个因果个人模型来估算个人营养效果。我们的评估,包括一项食品推荐测试,显示出 92% 的有效率,再加上说明性的对话实例,突出了 ChatDiet 在可解释性、个性化和互动性方面的优势。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
ChatDiet: Empowering personalized nutrition-oriented food recommender chatbots through an LLM-augmented framework

The profound impact of food on health necessitates advanced nutrition-oriented food recommendation services. Conventional methods often lack the crucial elements of personalization, explainability, and interactivity. While Large Language Models (LLMs) bring interpretability and explainability, their standalone use falls short of achieving true personalization. In this paper, we introduce ChatDiet, a novel LLM-powered framework designed specifically for personalized nutrition-oriented food recommendation chatbots. ChatDiet integrates personal and population models, complemented by an orchestrator, to seamlessly retrieve and process pertinent information. The personal model leverages causal discovery and inference techniques to assess personalized nutritional effects for a specific user, whereas the population model provides generalized information on food nutritional content. The orchestrator retrieves, synergizes and delivers the output of both models to the LLM, providing tailored food recommendations designed to support targeted health outcomes. The result is a dynamic delivery of personalized and explainable food recommendations, tailored to individual user preferences. Our evaluation of ChatDiet includes a compelling case study, where we establish a causal personal model to estimate individual nutrition effects. Our assessments, including a food recommendation test showcasing a 92% effectiveness rate, coupled with illustrative dialogue examples, underscore ChatDiet’s strengths in explainability, personalization, and interactivity.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Smart Health
Smart Health Computer Science-Computer Science Applications
CiteScore
6.50
自引率
0.00%
发文量
81
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信