利用 Jc 分布法为用不同方法制造的块状 MgB2 建立悬浮力模型

IF 1.3 3区 物理与天体物理 Q4 PHYSICS, APPLIED
O. Uzun, U.K. Ozturk
{"title":"利用 Jc 分布法为用不同方法制造的块状 MgB2 建立悬浮力模型","authors":"O. Uzun,&nbsp;U.K. Ozturk","doi":"10.1016/j.physc.2024.1354484","DOIUrl":null,"url":null,"abstract":"<div><p>Studies in literature have shown that the bulk MgB<sub>2</sub> structural characteristics and the associated superconducting properties are not homogeneous throughout the entire sample. This study focuses on understanding the effect of local differences in J<sub>c</sub> distribution on the levitation force. For this purpose, numerical modeling was performed for four samples, two of which were previously fabricated, and the other two were fictionalized. Levitation forces for these samples were calculated with three different J<sub>c</sub> distribution approaches: uniform, semi-uniform, and non-uniform. Comparing the four samples’ numerical results shows us that the position dependence of J<sub>c</sub> should be considered when performing numerical modeling in cases where there are significant local differences because of the local defects, thermal origin stress cracks in the outer side, and impurity distribution. It is inferred that the obtained results will help to elucidate the physical background of the local features and shielding currents on the levitation force and improve the bulk properties of the MgB<sub>2</sub> samples.</p></div>","PeriodicalId":20159,"journal":{"name":"Physica C-superconductivity and Its Applications","volume":"619 ","pages":"Article 1354484"},"PeriodicalIF":1.3000,"publicationDate":"2024-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Modeling of levitation force by using Jc distribution approaches for bulk MgB2 fabricated with different methods\",\"authors\":\"O. Uzun,&nbsp;U.K. Ozturk\",\"doi\":\"10.1016/j.physc.2024.1354484\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Studies in literature have shown that the bulk MgB<sub>2</sub> structural characteristics and the associated superconducting properties are not homogeneous throughout the entire sample. This study focuses on understanding the effect of local differences in J<sub>c</sub> distribution on the levitation force. For this purpose, numerical modeling was performed for four samples, two of which were previously fabricated, and the other two were fictionalized. Levitation forces for these samples were calculated with three different J<sub>c</sub> distribution approaches: uniform, semi-uniform, and non-uniform. Comparing the four samples’ numerical results shows us that the position dependence of J<sub>c</sub> should be considered when performing numerical modeling in cases where there are significant local differences because of the local defects, thermal origin stress cracks in the outer side, and impurity distribution. It is inferred that the obtained results will help to elucidate the physical background of the local features and shielding currents on the levitation force and improve the bulk properties of the MgB<sub>2</sub> samples.</p></div>\",\"PeriodicalId\":20159,\"journal\":{\"name\":\"Physica C-superconductivity and Its Applications\",\"volume\":\"619 \",\"pages\":\"Article 1354484\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2024-03-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physica C-superconductivity and Its Applications\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0921453424000492\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"PHYSICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physica C-superconductivity and Its Applications","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0921453424000492","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"PHYSICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

文献研究表明,块状 MgB2 的结构特征和相关超导特性在整个样品中并不均匀。本研究的重点是了解 Jc 分布的局部差异对悬浮力的影响。为此,我们对四个样品进行了数值建模,其中两个是以前制作的,另外两个是虚构的。通过三种不同的 Jc 分布方法(均匀、半均匀和非均匀)计算了这些样品的浮力。比较四个样品的数值结果表明,在进行数值建模时,如果由于局部缺陷、外侧热源应力裂纹和杂质分布等原因导致局部差异显著,则应考虑 Jc 的位置依赖性。由此推断,所获得的结果将有助于阐明局部特征和屏蔽电流对悬浮力的影响的物理背景,并改善 MgB2 样品的体积特性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Modeling of levitation force by using Jc distribution approaches for bulk MgB2 fabricated with different methods

Studies in literature have shown that the bulk MgB2 structural characteristics and the associated superconducting properties are not homogeneous throughout the entire sample. This study focuses on understanding the effect of local differences in Jc distribution on the levitation force. For this purpose, numerical modeling was performed for four samples, two of which were previously fabricated, and the other two were fictionalized. Levitation forces for these samples were calculated with three different Jc distribution approaches: uniform, semi-uniform, and non-uniform. Comparing the four samples’ numerical results shows us that the position dependence of Jc should be considered when performing numerical modeling in cases where there are significant local differences because of the local defects, thermal origin stress cracks in the outer side, and impurity distribution. It is inferred that the obtained results will help to elucidate the physical background of the local features and shielding currents on the levitation force and improve the bulk properties of the MgB2 samples.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.70
自引率
11.80%
发文量
102
审稿时长
66 days
期刊介绍: Physica C (Superconductivity and its Applications) publishes peer-reviewed papers on novel developments in the field of superconductivity. Topics include discovery of new superconducting materials and elucidation of their mechanisms, physics of vortex matter, enhancement of critical properties of superconductors, identification of novel properties and processing methods that improve their performance and promote new routes to applications of superconductivity. The main goal of the journal is to publish: 1. Papers that substantially increase the understanding of the fundamental aspects and mechanisms of superconductivity and vortex matter through theoretical and experimental methods. 2. Papers that report on novel physical properties and processing of materials that substantially enhance their critical performance. 3. Papers that promote new or improved routes to applications of superconductivity and/or superconducting materials, and proof-of-concept novel proto-type superconducting devices. The editors of the journal will select papers that are well written and based on thorough research that provide truly novel insights.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信