叶酸通过激活 notch-1 通路诱导结直肠癌细胞的干性并增加葡萄糖剥夺条件下的耗氧量。

IF 3.5 2区 生物学 Q3 CELL BIOLOGY
Molecular and Cellular Biochemistry Pub Date : 2025-01-01 Epub Date: 2024-03-27 DOI:10.1007/s11010-024-04987-1
Juan Rodríguez Silva, Matías Monsalves-Álvarez, Carlos Sepúlveda, Camila Donoso-Barraza, Rodrigo Troncoso, Sandra Hirsch
{"title":"叶酸通过激活 notch-1 通路诱导结直肠癌细胞的干性并增加葡萄糖剥夺条件下的耗氧量。","authors":"Juan Rodríguez Silva, Matías Monsalves-Álvarez, Carlos Sepúlveda, Camila Donoso-Barraza, Rodrigo Troncoso, Sandra Hirsch","doi":"10.1007/s11010-024-04987-1","DOIUrl":null,"url":null,"abstract":"<p><p>Evidence for folate's protective effects on neural tube defects led the USA and Chile to start mandatory folic acid (FA) fortification programs, decreasing up to 50%. However, ∼30% of the population consuming fortified foods reach supraphysiologic serum levels. Although controversial, several epidemiological and clinical observations suggest that folate increases cancer risk, giving concern about the risks of FA supplementation. The Cancer stem cells (CSCs) model has been used to explain survival to anticancer therapies. The Notch-1 pathway plays a role in several cancers and is associated with the stemness process. Different studies show that modulation of metabolic pathways regulates stemness capacity in cancer. Supraphysiologic concentrations of FA increase the proliferation of HT-29 cells by Notch-1 activation. However, whether folate can induce a stemness-like phenotype in cancer is not known. We hypothesized that FA protects from glucose deprivation-induced cell death through Notch-1 activation. HT-29 cells were challenged with glucose deprivation at basal (20 nM) and supraphysiological (400 nM) FA and 5-MTHF concentrations. We analyzed changes in stemness-like gene expression, cell death and different energetic metabolic functions. Supraphysiological concentrations of FA increased stemness-like genes, and improved survival and oxygen consumption, inducing AMPK phosphorylation and HSP-70 protein expression. We evaluated the Notch-1 pathway using the DAPT and siRNA as inhibitors, decreasing the stemness-like gene expression and preventing the FA protection against glucose deprivation-induced cell death. Moreover, they decreased oxygen consumption and AMPK phosphorylation. These results suggest that FA protects against glucose deprivation. These effects were associated with AMPK activation, a critical metabolic mediator in nutrient consumption and availability that activates the Notch-1 pathway.</p>","PeriodicalId":18724,"journal":{"name":"Molecular and Cellular Biochemistry","volume":" ","pages":"505-519"},"PeriodicalIF":3.5000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Folate induces stemness and increases oxygen consumption under glucose deprivation by notch-1 pathway activation in colorectal cancer cell.\",\"authors\":\"Juan Rodríguez Silva, Matías Monsalves-Álvarez, Carlos Sepúlveda, Camila Donoso-Barraza, Rodrigo Troncoso, Sandra Hirsch\",\"doi\":\"10.1007/s11010-024-04987-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Evidence for folate's protective effects on neural tube defects led the USA and Chile to start mandatory folic acid (FA) fortification programs, decreasing up to 50%. However, ∼30% of the population consuming fortified foods reach supraphysiologic serum levels. Although controversial, several epidemiological and clinical observations suggest that folate increases cancer risk, giving concern about the risks of FA supplementation. The Cancer stem cells (CSCs) model has been used to explain survival to anticancer therapies. The Notch-1 pathway plays a role in several cancers and is associated with the stemness process. Different studies show that modulation of metabolic pathways regulates stemness capacity in cancer. Supraphysiologic concentrations of FA increase the proliferation of HT-29 cells by Notch-1 activation. However, whether folate can induce a stemness-like phenotype in cancer is not known. We hypothesized that FA protects from glucose deprivation-induced cell death through Notch-1 activation. HT-29 cells were challenged with glucose deprivation at basal (20 nM) and supraphysiological (400 nM) FA and 5-MTHF concentrations. We analyzed changes in stemness-like gene expression, cell death and different energetic metabolic functions. Supraphysiological concentrations of FA increased stemness-like genes, and improved survival and oxygen consumption, inducing AMPK phosphorylation and HSP-70 protein expression. We evaluated the Notch-1 pathway using the DAPT and siRNA as inhibitors, decreasing the stemness-like gene expression and preventing the FA protection against glucose deprivation-induced cell death. Moreover, they decreased oxygen consumption and AMPK phosphorylation. These results suggest that FA protects against glucose deprivation. These effects were associated with AMPK activation, a critical metabolic mediator in nutrient consumption and availability that activates the Notch-1 pathway.</p>\",\"PeriodicalId\":18724,\"journal\":{\"name\":\"Molecular and Cellular Biochemistry\",\"volume\":\" \",\"pages\":\"505-519\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2025-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Molecular and Cellular Biochemistry\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1007/s11010-024-04987-1\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/3/27 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular and Cellular Biochemistry","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s11010-024-04987-1","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/3/27 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

叶酸对神经管畸形有保护作用的证据促使美国和智利开始实施叶酸(FA)强制强化计划,使叶酸摄入量下降达 50%。然而,在食用强化食品的人群中,有 30% 的人血清中的叶酸含量达到了生理水平。尽管存在争议,但一些流行病学和临床观察结果表明,叶酸会增加患癌风险,因此人们对补充叶酸的风险表示担忧。癌症干细胞(CSCs)模型被用来解释抗癌疗法的存活率。Notch-1 通路在多种癌症中发挥作用,并与干细胞过程有关。不同的研究表明,新陈代谢途径的调节可调控癌症干细胞的能力。超生理浓度的叶酸可通过激活Notch-1增加HT-29细胞的增殖。然而,叶酸是否能诱导癌症干性样表型尚不清楚。我们假设叶酸能通过激活Notch-1保护细胞免受葡萄糖剥夺诱导的细胞死亡。在基础浓度(20 nM)和超生理浓度(400 nM)的叶酸和 5-MTHF 作用下,HT-29 细胞受到葡萄糖剥夺的挑战。我们分析了干性类基因表达、细胞死亡和不同能量代谢功能的变化。超生理浓度的FA增加了类干基因,提高了存活率和耗氧量,诱导了AMPK磷酸化和HSP-70蛋白的表达。我们用DAPT和siRNA作为抑制剂评估了Notch-1通路,它们降低了类干基因的表达,阻止了FA对葡萄糖剥夺诱导的细胞死亡的保护作用。此外,它们还降低了耗氧量和 AMPK 磷酸化。这些结果表明,FA 对葡萄糖剥夺有保护作用。这些效应与 AMPK 激活有关,AMPK 是营养消耗和可用性的关键代谢介质,可激活 Notch-1 通路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Folate induces stemness and increases oxygen consumption under glucose deprivation by notch-1 pathway activation in colorectal cancer cell.

Folate induces stemness and increases oxygen consumption under glucose deprivation by notch-1 pathway activation in colorectal cancer cell.

Evidence for folate's protective effects on neural tube defects led the USA and Chile to start mandatory folic acid (FA) fortification programs, decreasing up to 50%. However, ∼30% of the population consuming fortified foods reach supraphysiologic serum levels. Although controversial, several epidemiological and clinical observations suggest that folate increases cancer risk, giving concern about the risks of FA supplementation. The Cancer stem cells (CSCs) model has been used to explain survival to anticancer therapies. The Notch-1 pathway plays a role in several cancers and is associated with the stemness process. Different studies show that modulation of metabolic pathways regulates stemness capacity in cancer. Supraphysiologic concentrations of FA increase the proliferation of HT-29 cells by Notch-1 activation. However, whether folate can induce a stemness-like phenotype in cancer is not known. We hypothesized that FA protects from glucose deprivation-induced cell death through Notch-1 activation. HT-29 cells were challenged with glucose deprivation at basal (20 nM) and supraphysiological (400 nM) FA and 5-MTHF concentrations. We analyzed changes in stemness-like gene expression, cell death and different energetic metabolic functions. Supraphysiological concentrations of FA increased stemness-like genes, and improved survival and oxygen consumption, inducing AMPK phosphorylation and HSP-70 protein expression. We evaluated the Notch-1 pathway using the DAPT and siRNA as inhibitors, decreasing the stemness-like gene expression and preventing the FA protection against glucose deprivation-induced cell death. Moreover, they decreased oxygen consumption and AMPK phosphorylation. These results suggest that FA protects against glucose deprivation. These effects were associated with AMPK activation, a critical metabolic mediator in nutrient consumption and availability that activates the Notch-1 pathway.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Molecular and Cellular Biochemistry
Molecular and Cellular Biochemistry 生物-细胞生物学
CiteScore
8.30
自引率
2.30%
发文量
293
审稿时长
1.7 months
期刊介绍: Molecular and Cellular Biochemistry: An International Journal for Chemical Biology in Health and Disease publishes original research papers and short communications in all areas of the biochemical sciences, emphasizing novel findings relevant to the biochemical basis of cellular function and disease processes, as well as the mechanics of action of hormones and chemical agents. Coverage includes membrane transport, receptor mechanism, immune response, secretory processes, and cytoskeletal function, as well as biochemical structure-function relationships in the cell. In addition to the reports of original research, the journal publishes state of the art reviews. Specific subjects covered by Molecular and Cellular Biochemistry include cellular metabolism, cellular pathophysiology, enzymology, ion transport, lipid biochemistry, membrane biochemistry, molecular biology, nuclear structure and function, and protein chemistry.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信