三维时间分数布辛斯-科里奥利方程的全局存在性

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Jinyi Sun, Chunlan Liu, Minghua Yang
{"title":"三维时间分数布辛斯-科里奥利方程的全局存在性","authors":"Jinyi Sun, Chunlan Liu, Minghua Yang","doi":"10.1007/s13540-024-00272-6","DOIUrl":null,"url":null,"abstract":"<p>The paper is concerned with the three-dimensional Boussinesq-Coriolis equations with Caputo time-fractional derivatives. Specifically, by striking new balances between the dispersion effects of the Coriolis force and the smoothing effects of the Laplacian dissipation involving with a time-fractional evolution mechanism, we obtain the global existence of mild solutions to Cauchy problem of three-dimensional time-fractional Boussinesq-Coriolis equations in Besov spaces.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Global existence for three-dimensional time-fractional Boussinesq-Coriolis equations\",\"authors\":\"Jinyi Sun, Chunlan Liu, Minghua Yang\",\"doi\":\"10.1007/s13540-024-00272-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The paper is concerned with the three-dimensional Boussinesq-Coriolis equations with Caputo time-fractional derivatives. Specifically, by striking new balances between the dispersion effects of the Coriolis force and the smoothing effects of the Laplacian dissipation involving with a time-fractional evolution mechanism, we obtain the global existence of mild solutions to Cauchy problem of three-dimensional time-fractional Boussinesq-Coriolis equations in Besov spaces.</p>\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-03-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s13540-024-00272-6\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s13540-024-00272-6","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

摘要

本文主要研究具有卡普托时间分数导数的三维布森斯克-科里奥利方程。具体地说,通过在科里奥利力的分散效应和拉普拉斯耗散的平滑效应之间达成新的平衡,我们得到了贝索夫空间中三维时间分数布西内斯克-科里奥利方程 Cauchy 问题的全局存在性温和解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Global existence for three-dimensional time-fractional Boussinesq-Coriolis equations

The paper is concerned with the three-dimensional Boussinesq-Coriolis equations with Caputo time-fractional derivatives. Specifically, by striking new balances between the dispersion effects of the Coriolis force and the smoothing effects of the Laplacian dissipation involving with a time-fractional evolution mechanism, we obtain the global existence of mild solutions to Cauchy problem of three-dimensional time-fractional Boussinesq-Coriolis equations in Besov spaces.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信