用贝叶斯方法解决多代理协作自主中的信任问题

R. Spencer Hallyburton, Miroslav Pajic
{"title":"用贝叶斯方法解决多代理协作自主中的信任问题","authors":"R. Spencer Hallyburton, Miroslav Pajic","doi":"arxiv-2403.16956","DOIUrl":null,"url":null,"abstract":"Multi-agent, collaborative sensor fusion is a vital component of a\nmulti-national intelligence toolkit. In safety-critical and/or contested\nenvironments, adversaries may infiltrate and compromise a number of agents. We\nanalyze state of the art multi-target tracking algorithms under this\ncompromised agent threat model. We prove that the track existence probability\ntest (\"track score\") is significantly vulnerable to even small numbers of\nadversaries. To add security awareness, we design a trust estimation framework\nusing hierarchical Bayesian updating. Our framework builds beliefs of trust on\ntracks and agents by mapping sensor measurements to trust pseudomeasurements\n(PSMs) and incorporating prior trust beliefs in a Bayesian context. In case\nstudies, our trust estimation algorithm accurately estimates the\ntrustworthiness of tracks/agents, subject to observability limitations.","PeriodicalId":501062,"journal":{"name":"arXiv - CS - Systems and Control","volume":"72 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Bayesian Methods for Trust in Collaborative Multi-Agent Autonomy\",\"authors\":\"R. Spencer Hallyburton, Miroslav Pajic\",\"doi\":\"arxiv-2403.16956\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Multi-agent, collaborative sensor fusion is a vital component of a\\nmulti-national intelligence toolkit. In safety-critical and/or contested\\nenvironments, adversaries may infiltrate and compromise a number of agents. We\\nanalyze state of the art multi-target tracking algorithms under this\\ncompromised agent threat model. We prove that the track existence probability\\ntest (\\\"track score\\\") is significantly vulnerable to even small numbers of\\nadversaries. To add security awareness, we design a trust estimation framework\\nusing hierarchical Bayesian updating. Our framework builds beliefs of trust on\\ntracks and agents by mapping sensor measurements to trust pseudomeasurements\\n(PSMs) and incorporating prior trust beliefs in a Bayesian context. In case\\nstudies, our trust estimation algorithm accurately estimates the\\ntrustworthiness of tracks/agents, subject to observability limitations.\",\"PeriodicalId\":501062,\"journal\":{\"name\":\"arXiv - CS - Systems and Control\",\"volume\":\"72 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-03-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - CS - Systems and Control\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2403.16956\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Systems and Control","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2403.16956","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

多代理协作传感器融合是多国情报工具包的重要组成部分。在对安全至关重要和/或有争议的环境中,对手可能会渗透并破坏多个代理。我们分析了在这种被破坏的代理威胁模型下最先进的多目标跟踪算法。我们证明,跟踪存在概率测试("跟踪得分")即使在少量对手面前也非常脆弱。为了增加安全意识,我们设计了一个使用分层贝叶斯更新的信任估计框架。我们的框架通过将传感器测量值映射到信任伪测量值(PSMs),并在贝叶斯背景下纳入先前的信任信念,从而建立对跟踪和代理的信任信念。在案例研究中,我们的信任估计算法准确地估计了轨道/代理的可信度,但受到可观测性的限制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Bayesian Methods for Trust in Collaborative Multi-Agent Autonomy
Multi-agent, collaborative sensor fusion is a vital component of a multi-national intelligence toolkit. In safety-critical and/or contested environments, adversaries may infiltrate and compromise a number of agents. We analyze state of the art multi-target tracking algorithms under this compromised agent threat model. We prove that the track existence probability test ("track score") is significantly vulnerable to even small numbers of adversaries. To add security awareness, we design a trust estimation framework using hierarchical Bayesian updating. Our framework builds beliefs of trust on tracks and agents by mapping sensor measurements to trust pseudomeasurements (PSMs) and incorporating prior trust beliefs in a Bayesian context. In case studies, our trust estimation algorithm accurately estimates the trustworthiness of tracks/agents, subject to observability limitations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信