{"title":"利用 HOSM 微分器为具有未知输入的连续 LPV 系统设计新的 H∞ 观察器","authors":"Luc Meyer","doi":"10.1093/imamci/dnae008","DOIUrl":null,"url":null,"abstract":"The main contribution of this paper is the development of $H_{\\infty }$ state and unknown input (UI) observers for noisy linear parameter-varying (LPV) systems. The observers are constructed in order to be unbiased (in particular the state estimation error is decoupled from the UI) and with a minimum $L_{2}$ transfer between the perturbations (that are assumed to be with finite energy) and the estimation errors. Contrary to equivalent observers developed in the literature, the present one relaxes a widely used rank condition on the system matrices for decoupling the UI. In order to do so, high-order derivation is needed, which is done using a high-order sliding modes differentiator. A method is given to design observer gains for LPV systems under polytopic form. Finally, three examples illustrate some aspects of the theoretical contributions, and compare this work to the existing ones.","PeriodicalId":56128,"journal":{"name":"IMA Journal of Mathematical Control and Information","volume":"21 1","pages":""},"PeriodicalIF":1.6000,"publicationDate":"2024-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A new H∞ observer for continuous LPV systems with unknown inputs using an HOSM differentiator\",\"authors\":\"Luc Meyer\",\"doi\":\"10.1093/imamci/dnae008\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The main contribution of this paper is the development of $H_{\\\\infty }$ state and unknown input (UI) observers for noisy linear parameter-varying (LPV) systems. The observers are constructed in order to be unbiased (in particular the state estimation error is decoupled from the UI) and with a minimum $L_{2}$ transfer between the perturbations (that are assumed to be with finite energy) and the estimation errors. Contrary to equivalent observers developed in the literature, the present one relaxes a widely used rank condition on the system matrices for decoupling the UI. In order to do so, high-order derivation is needed, which is done using a high-order sliding modes differentiator. A method is given to design observer gains for LPV systems under polytopic form. Finally, three examples illustrate some aspects of the theoretical contributions, and compare this work to the existing ones.\",\"PeriodicalId\":56128,\"journal\":{\"name\":\"IMA Journal of Mathematical Control and Information\",\"volume\":\"21 1\",\"pages\":\"\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2024-03-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IMA Journal of Mathematical Control and Information\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1093/imamci/dnae008\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IMA Journal of Mathematical Control and Information","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1093/imamci/dnae008","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
A new H∞ observer for continuous LPV systems with unknown inputs using an HOSM differentiator
The main contribution of this paper is the development of $H_{\infty }$ state and unknown input (UI) observers for noisy linear parameter-varying (LPV) systems. The observers are constructed in order to be unbiased (in particular the state estimation error is decoupled from the UI) and with a minimum $L_{2}$ transfer between the perturbations (that are assumed to be with finite energy) and the estimation errors. Contrary to equivalent observers developed in the literature, the present one relaxes a widely used rank condition on the system matrices for decoupling the UI. In order to do so, high-order derivation is needed, which is done using a high-order sliding modes differentiator. A method is given to design observer gains for LPV systems under polytopic form. Finally, three examples illustrate some aspects of the theoretical contributions, and compare this work to the existing ones.
期刊介绍:
The Journal is to provide an outlet for papers which are original and of high quality in mathematical control theory, systems theory, and applied information sciences. Short papers and mathematical correspondence or technical notes will be welcome, although the primary function of the journal is to publish papers of substantial length and coverage. The emphasis will be upon relevance, originality and clarify of presentation, although timeliness may well be an important feature in acceptable papers. Speculative papers that suggest new avenues for research or potential solutions to unsolved problems of control and information theory will be particularly welcome. Specific application papers will not normally be within the remit of the journal. Applications that illustrate techniques or theories will be acceptable. A prime function of the journal is to encourage the interplay between control and information theory and other mathematical sciences.
All submitted papers will be judged on their merits by at least two referees and a full paper report will be available to the intending authors. Submitted articles will in general be published in an issue within six months of submission. Papers should not have previously published, nor should they be undes consideration for publication in another journal. This Journal takes publication ethics very seriously. If misconduct is found or suspected after the manuscript is published, the journal will investigate the matter and this may result in the article subsequently being retracted.