Francesco Boarotto, Roberto Monti, Alessandro Socionovo
{"title":"Corank 1 奇异极值的高阶 Goh 条件","authors":"Francesco Boarotto, Roberto Monti, Alessandro Socionovo","doi":"10.1007/s00205-024-01964-2","DOIUrl":null,"url":null,"abstract":"<div><p>We prove Goh conditions of order <span>\\(n\\geqq 3\\)</span> for strictly singular length-minimizing curves of corank 1, under the assumption that the domain of the <i>n</i>th instrinsic differential is of finite codimension. This result relies upon the proof of an open mapping theorem for maps with a regular <i>n</i>th differential.</p></div>","PeriodicalId":55484,"journal":{"name":"Archive for Rational Mechanics and Analysis","volume":"248 2","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2024-03-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Higher Order Goh Conditions for Singular Extremals of Corank 1\",\"authors\":\"Francesco Boarotto, Roberto Monti, Alessandro Socionovo\",\"doi\":\"10.1007/s00205-024-01964-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We prove Goh conditions of order <span>\\\\(n\\\\geqq 3\\\\)</span> for strictly singular length-minimizing curves of corank 1, under the assumption that the domain of the <i>n</i>th instrinsic differential is of finite codimension. This result relies upon the proof of an open mapping theorem for maps with a regular <i>n</i>th differential.</p></div>\",\"PeriodicalId\":55484,\"journal\":{\"name\":\"Archive for Rational Mechanics and Analysis\",\"volume\":\"248 2\",\"pages\":\"\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-03-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Archive for Rational Mechanics and Analysis\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00205-024-01964-2\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Archive for Rational Mechanics and Analysis","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s00205-024-01964-2","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0
摘要
我们证明了角 1 的严格奇异长度最小化曲线的 阶(n\geqq 3\)Goh 条件,其假设条件是第 n 个本征微分的域是有限编码维的。这一结果依赖于对具有正则 n 次微分的映射的开放映射定理的证明。
Higher Order Goh Conditions for Singular Extremals of Corank 1
We prove Goh conditions of order \(n\geqq 3\) for strictly singular length-minimizing curves of corank 1, under the assumption that the domain of the nth instrinsic differential is of finite codimension. This result relies upon the proof of an open mapping theorem for maps with a regular nth differential.
期刊介绍:
The Archive for Rational Mechanics and Analysis nourishes the discipline of mechanics as a deductive, mathematical science in the classical tradition and promotes analysis, particularly in the context of application. Its purpose is to give rapid and full publication to research of exceptional moment, depth and permanence.