基于百叶窗形缺陷地面结构的低侧贝馈电网络设计

IF 1.2 4区 计算机科学 Q4 ENGINEERING, ELECTRICAL & ELECTRONIC
Zhang Yuan, Xi Songtao
{"title":"基于百叶窗形缺陷地面结构的低侧贝馈电网络设计","authors":"Zhang Yuan, Xi Songtao","doi":"10.1155/2024/3452375","DOIUrl":null,"url":null,"abstract":"In this paper, a low sidelobe feeding network has been developed utilizing the louver-shaped defected ground structure (DGS). By adjusting the louver-shaped DGS, the output amplitude and phase of the corresponding ports can be altered, minimizing deviations from theoretical values. This enables antenna arrays equipped with this feeding network to more easily achieve low sidelobe performance. The impact of the louver-shaped DGS on the amplitude and phase of each port in the power divider within the feeding network is analyzed, and a 16-channel feeding network incorporating the louver-shaped DGS has been designed, fabricated, and then measured. The test results indicate that the performance of the line-feeding network is effectively improved by designing and adjusting the louver-shaped DGS. Through the debugging procedure, the amplitude deviation of the feeding network has been reduced from ±0.45 dB to ±0.2 dB, while the phase deviation of the feeding network has been reduced from ±8° to ±2.5°, and the maximum value of the first sidelobe has been reduced from −24.2 dB to −28.1 dB.","PeriodicalId":54392,"journal":{"name":"International Journal of Antennas and Propagation","volume":"234 1","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2024-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Design of a Low Sidelobe Feed Network Based on the Louver-Shaped Defected Ground Structure\",\"authors\":\"Zhang Yuan, Xi Songtao\",\"doi\":\"10.1155/2024/3452375\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, a low sidelobe feeding network has been developed utilizing the louver-shaped defected ground structure (DGS). By adjusting the louver-shaped DGS, the output amplitude and phase of the corresponding ports can be altered, minimizing deviations from theoretical values. This enables antenna arrays equipped with this feeding network to more easily achieve low sidelobe performance. The impact of the louver-shaped DGS on the amplitude and phase of each port in the power divider within the feeding network is analyzed, and a 16-channel feeding network incorporating the louver-shaped DGS has been designed, fabricated, and then measured. The test results indicate that the performance of the line-feeding network is effectively improved by designing and adjusting the louver-shaped DGS. Through the debugging procedure, the amplitude deviation of the feeding network has been reduced from ±0.45 dB to ±0.2 dB, while the phase deviation of the feeding network has been reduced from ±8° to ±2.5°, and the maximum value of the first sidelobe has been reduced from −24.2 dB to −28.1 dB.\",\"PeriodicalId\":54392,\"journal\":{\"name\":\"International Journal of Antennas and Propagation\",\"volume\":\"234 1\",\"pages\":\"\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2024-03-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Antennas and Propagation\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1155/2024/3452375\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Antennas and Propagation","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1155/2024/3452375","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

本文利用百叶窗形缺陷地面结构(DGS)开发了一种低侧叶馈电网络。通过调整百叶窗形 DGS,可以改变相应端口的输出振幅和相位,最大限度地减少与理论值的偏差。这样,配备这种馈电网络的天线阵列就能更容易地实现低侧叶性能。我们分析了百叶窗形 DGS 对馈电网络内功率分配器各端口振幅和相位的影响,并设计、制造和测量了一个包含百叶窗形 DGS 的 16 通道馈电网络。测试结果表明,通过设计和调整百叶窗形 DGS,馈电网络的性能得到了有效改善。通过调试程序,馈电网络的振幅偏差从 ±0.45 dB 减小到 ±0.2 dB,馈电网络的相位偏差从 ±8° 减小到 ±2.5°,第一个侧叶的最大值从 -24.2 dB 减小到 -28.1 dB。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Design of a Low Sidelobe Feed Network Based on the Louver-Shaped Defected Ground Structure
In this paper, a low sidelobe feeding network has been developed utilizing the louver-shaped defected ground structure (DGS). By adjusting the louver-shaped DGS, the output amplitude and phase of the corresponding ports can be altered, minimizing deviations from theoretical values. This enables antenna arrays equipped with this feeding network to more easily achieve low sidelobe performance. The impact of the louver-shaped DGS on the amplitude and phase of each port in the power divider within the feeding network is analyzed, and a 16-channel feeding network incorporating the louver-shaped DGS has been designed, fabricated, and then measured. The test results indicate that the performance of the line-feeding network is effectively improved by designing and adjusting the louver-shaped DGS. Through the debugging procedure, the amplitude deviation of the feeding network has been reduced from ±0.45 dB to ±0.2 dB, while the phase deviation of the feeding network has been reduced from ±8° to ±2.5°, and the maximum value of the first sidelobe has been reduced from −24.2 dB to −28.1 dB.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Antennas and Propagation
International Journal of Antennas and Propagation ENGINEERING, ELECTRICAL & ELECTRONIC-TELECOMMUNICATIONS
CiteScore
3.10
自引率
13.30%
发文量
158
审稿时长
3.8 months
期刊介绍: International Journal of Antennas and Propagation publishes papers on the design, analysis, and applications of antennas, along with theoretical and practical studies relating the propagation of electromagnetic waves at all relevant frequencies, through space, air, and other media. As well as original research, the International Journal of Antennas and Propagation also publishes focused review articles that examine the state of the art, identify emerging trends, and suggest future directions for developing fields.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信