利用 DRL 进行动态环境中机器人机械手的轨迹规划

Osama Ahmad, Zawar Hussain, Hammad Naeem
{"title":"利用 DRL 进行动态环境中机器人机械手的轨迹规划","authors":"Osama Ahmad, Zawar Hussain, Hammad Naeem","doi":"arxiv-2403.16652","DOIUrl":null,"url":null,"abstract":"This study is about the implementation of a reinforcement learning algorithm\nin the trajectory planning of manipulators. We have a 7-DOF robotic arm to pick\nand place the randomly placed block at a random target point in an unknown\nenvironment. The obstacle is randomly moving which creates a hurdle in picking\nthe object. The objective of the robot is to avoid the obstacle and pick the\nblock with constraints to a fixed timestamp. In this literature, we have\napplied a deep deterministic policy gradient (DDPG) algorithm and compared the\nmodel's efficiency with dense and sparse rewards.","PeriodicalId":501062,"journal":{"name":"arXiv - CS - Systems and Control","volume":"12 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Trajectory Planning of Robotic Manipulator in Dynamic Environment Exploiting DRL\",\"authors\":\"Osama Ahmad, Zawar Hussain, Hammad Naeem\",\"doi\":\"arxiv-2403.16652\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This study is about the implementation of a reinforcement learning algorithm\\nin the trajectory planning of manipulators. We have a 7-DOF robotic arm to pick\\nand place the randomly placed block at a random target point in an unknown\\nenvironment. The obstacle is randomly moving which creates a hurdle in picking\\nthe object. The objective of the robot is to avoid the obstacle and pick the\\nblock with constraints to a fixed timestamp. In this literature, we have\\napplied a deep deterministic policy gradient (DDPG) algorithm and compared the\\nmodel's efficiency with dense and sparse rewards.\",\"PeriodicalId\":501062,\"journal\":{\"name\":\"arXiv - CS - Systems and Control\",\"volume\":\"12 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-03-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - CS - Systems and Control\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2403.16652\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Systems and Control","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2403.16652","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本研究是关于强化学习算法在机械手轨迹规划中的应用。我们有一个 7-DOF 机械臂,要在未知环境中将随机放置的木块拾取并放置到随机目标点。障碍物是随机移动的,这给拾取物体造成了障碍。机器人的目标是避开障碍物,并在固定时间戳的约束下拾取木块。在这篇文献中,我们应用了一种深度确定性策略梯度(DDPG)算法,并比较了该算法在密集奖励和稀疏奖励情况下的效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Trajectory Planning of Robotic Manipulator in Dynamic Environment Exploiting DRL
This study is about the implementation of a reinforcement learning algorithm in the trajectory planning of manipulators. We have a 7-DOF robotic arm to pick and place the randomly placed block at a random target point in an unknown environment. The obstacle is randomly moving which creates a hurdle in picking the object. The objective of the robot is to avoid the obstacle and pick the block with constraints to a fixed timestamp. In this literature, we have applied a deep deterministic policy gradient (DDPG) algorithm and compared the model's efficiency with dense and sparse rewards.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信