中的扎里斯基密表面子群

IF 0.6 3区 数学 Q3 MATHEMATICS
CARMEN GALAZ GARCÍA
{"title":"中的扎里斯基密表面子群","authors":"CARMEN GALAZ GARCÍA","doi":"10.1017/s0305004124000070","DOIUrl":null,"url":null,"abstract":"<p>For odd <span>n</span> we construct a path <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240325160819198-0562:S0305004124000070:S0305004124000070_inline3.png\"><span data-mathjax-type=\"texmath\"><span>$\\rho\\;:\\;\\thinspace \\Pi_1(S) \\to SL(n\\mathbb{R})$</span></span></img></span></span> of discrete, faithful, and Zariski dense representations of a surface group such that <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240325160819198-0562:S0305004124000070:S0305004124000070_inline4.png\"><span data-mathjax-type=\"texmath\"><span>$\\rho_t(\\Pi_1(S)) \\subset SL(n,\\mathbb{Q})$</span></span></img></span></span> for every <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240325160819198-0562:S0305004124000070:S0305004124000070_inline5.png\"><span data-mathjax-type=\"texmath\"><span>$t\\in \\mathbb{Q}$</span></span></img></span></span>.</p>","PeriodicalId":18320,"journal":{"name":"Mathematical Proceedings of the Cambridge Philosophical Society","volume":"32 1","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2024-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Zariski dense surface subgroups in\",\"authors\":\"CARMEN GALAZ GARCÍA\",\"doi\":\"10.1017/s0305004124000070\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>For odd <span>n</span> we construct a path <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240325160819198-0562:S0305004124000070:S0305004124000070_inline3.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$\\\\rho\\\\;:\\\\;\\\\thinspace \\\\Pi_1(S) \\\\to SL(n\\\\mathbb{R})$</span></span></img></span></span> of discrete, faithful, and Zariski dense representations of a surface group such that <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240325160819198-0562:S0305004124000070:S0305004124000070_inline4.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$\\\\rho_t(\\\\Pi_1(S)) \\\\subset SL(n,\\\\mathbb{Q})$</span></span></img></span></span> for every <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240325160819198-0562:S0305004124000070:S0305004124000070_inline5.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$t\\\\in \\\\mathbb{Q}$</span></span></img></span></span>.</p>\",\"PeriodicalId\":18320,\"journal\":{\"name\":\"Mathematical Proceedings of the Cambridge Philosophical Society\",\"volume\":\"32 1\",\"pages\":\"\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2024-03-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematical Proceedings of the Cambridge Philosophical Society\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1017/s0305004124000070\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical Proceedings of the Cambridge Philosophical Society","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1017/s0305004124000070","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

对于奇数 n,我们构建了一条 $\rho\;:\;\thinspace \Pi_1(S) \to SL(n\mathbb{R})$ 的离散、忠实和扎里斯基密集表示的表面群路径,使得 $\rho_t(\Pi_1(S))\对于 \mathbb{Q}$ 中的每一个 $t,都是 SL(n,\mathbb{Q})$ 的子集。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Zariski dense surface subgroups in

For odd n we construct a path $\rho\;:\;\thinspace \Pi_1(S) \to SL(n\mathbb{R})$ of discrete, faithful, and Zariski dense representations of a surface group such that $\rho_t(\Pi_1(S)) \subset SL(n,\mathbb{Q})$ for every $t\in \mathbb{Q}$.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.70
自引率
0.00%
发文量
39
审稿时长
6-12 weeks
期刊介绍: Papers which advance knowledge of mathematics, either pure or applied, will be considered by the Editorial Committee. The work must be original and not submitted to another journal.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信