{"title":"图中最小联盟数","authors":"Davood Bakhshesh, Michael A. Henning","doi":"10.1007/s00010-024-01045-5","DOIUrl":null,"url":null,"abstract":"<p>A set <i>S</i> of vertices in a graph <i>G</i> is a dominating set if every vertex of <span>\\(V(G) \\setminus S\\)</span> is adjacent to a vertex in <i>S</i>. A coalition in <i>G</i> consists of two disjoint sets of vertices <i>X</i> and <i>Y</i> of <i>G</i>, neither of which is a dominating set but whose union <span>\\(X \\cup Y\\)</span> is a dominating set of <i>G</i>. Such sets <i>X</i> and <i>Y</i> form a coalition in <i>G</i>. A coalition partition, abbreviated <i>c</i>-partition, in <i>G</i> is a partition <span>\\({\\mathcal {X}} = \\{X_1,\\ldots ,X_k\\}\\)</span> of the vertex set <i>V</i>(<i>G</i>) of <i>G</i> such that for all <span>\\(i \\in [k]\\)</span>, each set <span>\\(X_i \\in {\\mathcal {X}}\\)</span> satisfies one of the following two conditions: (1) <span>\\(X_i\\)</span> is a dominating set of <i>G</i> with a single vertex, or (2) <span>\\(X_i\\)</span> forms a coalition with some other set <span>\\(X_j \\in {\\mathcal {X}}\\)</span>. Let <span>\\({{\\mathcal {A}}} = \\{A_1,\\ldots ,A_r\\}\\)</span> and <span>\\({{\\mathcal {B}}}= \\{B_1,\\ldots , B_s\\}\\)</span> be two partitions of <i>V</i>(<i>G</i>). Partition <span>\\({{\\mathcal {B}}}\\)</span> is a refinement of partition <span>\\({{\\mathcal {A}}}\\)</span> if every set <span>\\(B_i \\in {{\\mathcal {B}}} \\)</span> is either equal to, or a proper subset of, some set <span>\\(A_j \\in {{\\mathcal {A}}}\\)</span>. Further if <span>\\({{\\mathcal {A}}} \\ne {{\\mathcal {B}}}\\)</span>, then <span>\\({{\\mathcal {B}}}\\)</span> is a proper refinement of <span>\\({{\\mathcal {A}}}\\)</span>. Partition <span>\\({{\\mathcal {A}}}\\)</span> is a minimal <i>c</i>-partition if it is not a proper refinement of another <i>c</i>-partition. Haynes et al. [AKCE Int. J. Graphs Combin. 17 (2020), no. 2, 653–659] defined the minmin coalition number <span>\\(c_{\\min }(G)\\)</span> of <i>G</i> to equal the minimum order of a minimal <i>c</i>-partition of <i>G</i>. We show that <span>\\(2 \\le c_{\\min }(G) \\le n\\)</span>, and we characterize graphs <i>G</i> of order <i>n</i> satisfying <span>\\(c_{\\min }(G) = n\\)</span>. A polynomial-time algorithm is given to determine if <span>\\(c_{\\min }(G)=2\\)</span> for a given graph <i>G</i>. A necessary and sufficient condition for a graph <i>G</i> to satisfy <span>\\(c_{\\min }(G) \\ge 3\\)</span> is given, and a characterization of graphs <i>G</i> with minimum degree 2 and <span>\\(c_{\\min }(G)= 4\\)</span> is provided.</p>","PeriodicalId":55611,"journal":{"name":"Aequationes Mathematicae","volume":"22 1","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2024-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The minmin coalition number in graphs\",\"authors\":\"Davood Bakhshesh, Michael A. Henning\",\"doi\":\"10.1007/s00010-024-01045-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>A set <i>S</i> of vertices in a graph <i>G</i> is a dominating set if every vertex of <span>\\\\(V(G) \\\\setminus S\\\\)</span> is adjacent to a vertex in <i>S</i>. A coalition in <i>G</i> consists of two disjoint sets of vertices <i>X</i> and <i>Y</i> of <i>G</i>, neither of which is a dominating set but whose union <span>\\\\(X \\\\cup Y\\\\)</span> is a dominating set of <i>G</i>. Such sets <i>X</i> and <i>Y</i> form a coalition in <i>G</i>. A coalition partition, abbreviated <i>c</i>-partition, in <i>G</i> is a partition <span>\\\\({\\\\mathcal {X}} = \\\\{X_1,\\\\ldots ,X_k\\\\}\\\\)</span> of the vertex set <i>V</i>(<i>G</i>) of <i>G</i> such that for all <span>\\\\(i \\\\in [k]\\\\)</span>, each set <span>\\\\(X_i \\\\in {\\\\mathcal {X}}\\\\)</span> satisfies one of the following two conditions: (1) <span>\\\\(X_i\\\\)</span> is a dominating set of <i>G</i> with a single vertex, or (2) <span>\\\\(X_i\\\\)</span> forms a coalition with some other set <span>\\\\(X_j \\\\in {\\\\mathcal {X}}\\\\)</span>. Let <span>\\\\({{\\\\mathcal {A}}} = \\\\{A_1,\\\\ldots ,A_r\\\\}\\\\)</span> and <span>\\\\({{\\\\mathcal {B}}}= \\\\{B_1,\\\\ldots , B_s\\\\}\\\\)</span> be two partitions of <i>V</i>(<i>G</i>). Partition <span>\\\\({{\\\\mathcal {B}}}\\\\)</span> is a refinement of partition <span>\\\\({{\\\\mathcal {A}}}\\\\)</span> if every set <span>\\\\(B_i \\\\in {{\\\\mathcal {B}}} \\\\)</span> is either equal to, or a proper subset of, some set <span>\\\\(A_j \\\\in {{\\\\mathcal {A}}}\\\\)</span>. Further if <span>\\\\({{\\\\mathcal {A}}} \\\\ne {{\\\\mathcal {B}}}\\\\)</span>, then <span>\\\\({{\\\\mathcal {B}}}\\\\)</span> is a proper refinement of <span>\\\\({{\\\\mathcal {A}}}\\\\)</span>. Partition <span>\\\\({{\\\\mathcal {A}}}\\\\)</span> is a minimal <i>c</i>-partition if it is not a proper refinement of another <i>c</i>-partition. Haynes et al. [AKCE Int. J. Graphs Combin. 17 (2020), no. 2, 653–659] defined the minmin coalition number <span>\\\\(c_{\\\\min }(G)\\\\)</span> of <i>G</i> to equal the minimum order of a minimal <i>c</i>-partition of <i>G</i>. We show that <span>\\\\(2 \\\\le c_{\\\\min }(G) \\\\le n\\\\)</span>, and we characterize graphs <i>G</i> of order <i>n</i> satisfying <span>\\\\(c_{\\\\min }(G) = n\\\\)</span>. A polynomial-time algorithm is given to determine if <span>\\\\(c_{\\\\min }(G)=2\\\\)</span> for a given graph <i>G</i>. A necessary and sufficient condition for a graph <i>G</i> to satisfy <span>\\\\(c_{\\\\min }(G) \\\\ge 3\\\\)</span> is given, and a characterization of graphs <i>G</i> with minimum degree 2 and <span>\\\\(c_{\\\\min }(G)= 4\\\\)</span> is provided.</p>\",\"PeriodicalId\":55611,\"journal\":{\"name\":\"Aequationes Mathematicae\",\"volume\":\"22 1\",\"pages\":\"\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2024-03-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Aequationes Mathematicae\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s00010-024-01045-5\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Aequationes Mathematicae","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00010-024-01045-5","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
摘要
如果 \(V(G) \setminus S\) 的每个顶点都与 S 中的顶点相邻,那么图 G 中的顶点集 S 就是一个支配集。G 中的联盟由 G 的顶点 X 和 Y 的两个不相交的集合组成,这两个集合都不是支配集,但是它们的联合 \(X cup Y\) 是 G 的支配集。G 中的联盟分区,简称 c-partition 是 G 的顶点集 V(G) 的分区 \({\mathcal {X}} = \{X_1,\ldots ,X_k\}\) ,对于所有 \(i \in [k]\), 每个集合 \(X_i \in {\mathcal {X}}\) 满足以下两个条件之一:(1) \(X_i\)是 G 的支配集,只有一个顶点;或者 (2) \(X_i\)与其他某个集 \(X_j \in {\mathcal {X}}\)形成联盟。让 \({{\mathcal {A}}= \{A_1,\ldots ,A_r\}\) 和 \({{mathcal {B}}}= \{B_1,\ldots , B_s\}) 是 V(G) 的两个分区。)如果每个集合 ({{/mathcal {B}} 中的 B_i )都等于某个集合 ({{/mathcal {A}} 中的 A_j ),或者是某个集合 ({{/mathcal {A}}} 中的 A_j )的适当子集,那么分区 ({{/mathcal {B}}} )就是分区 ({{/mathcal {A}}} )的细化。此外,如果 \({{\mathcal {A}} \ne {{\mathcal {B}}\), 那么 \({{\mathcal {B}}\) 是 \({{\mathcal {A}}}\) 的适当细化。)如果分区 \({{\mathcal {A}}\) 不是另一个 c 分区的适当细化,那么它就是最小的 c 分区。我们证明了 \(2 \le c_{\min }(G) \le n\), 并且我们描述了满足 \(c_{\min }(G) = n\) 的 n 阶图 G 的特征。给出了图 G 满足 \(c_{\min }(G) \ge 3\) 的必要条件和充分条件,并给出了最小度为 2 且 \(c_{\min }(G)= 4\) 的图 G 的特征。
A set S of vertices in a graph G is a dominating set if every vertex of \(V(G) \setminus S\) is adjacent to a vertex in S. A coalition in G consists of two disjoint sets of vertices X and Y of G, neither of which is a dominating set but whose union \(X \cup Y\) is a dominating set of G. Such sets X and Y form a coalition in G. A coalition partition, abbreviated c-partition, in G is a partition \({\mathcal {X}} = \{X_1,\ldots ,X_k\}\) of the vertex set V(G) of G such that for all \(i \in [k]\), each set \(X_i \in {\mathcal {X}}\) satisfies one of the following two conditions: (1) \(X_i\) is a dominating set of G with a single vertex, or (2) \(X_i\) forms a coalition with some other set \(X_j \in {\mathcal {X}}\). Let \({{\mathcal {A}}} = \{A_1,\ldots ,A_r\}\) and \({{\mathcal {B}}}= \{B_1,\ldots , B_s\}\) be two partitions of V(G). Partition \({{\mathcal {B}}}\) is a refinement of partition \({{\mathcal {A}}}\) if every set \(B_i \in {{\mathcal {B}}} \) is either equal to, or a proper subset of, some set \(A_j \in {{\mathcal {A}}}\). Further if \({{\mathcal {A}}} \ne {{\mathcal {B}}}\), then \({{\mathcal {B}}}\) is a proper refinement of \({{\mathcal {A}}}\). Partition \({{\mathcal {A}}}\) is a minimal c-partition if it is not a proper refinement of another c-partition. Haynes et al. [AKCE Int. J. Graphs Combin. 17 (2020), no. 2, 653–659] defined the minmin coalition number \(c_{\min }(G)\) of G to equal the minimum order of a minimal c-partition of G. We show that \(2 \le c_{\min }(G) \le n\), and we characterize graphs G of order n satisfying \(c_{\min }(G) = n\). A polynomial-time algorithm is given to determine if \(c_{\min }(G)=2\) for a given graph G. A necessary and sufficient condition for a graph G to satisfy \(c_{\min }(G) \ge 3\) is given, and a characterization of graphs G with minimum degree 2 and \(c_{\min }(G)= 4\) is provided.
期刊介绍:
aequationes mathematicae is an international journal of pure and applied mathematics, which emphasizes functional equations, dynamical systems, iteration theory, combinatorics, and geometry. The journal publishes research papers, reports of meetings, and bibliographies. High quality survey articles are an especially welcome feature. In addition, summaries of recent developments and research in the field are published rapidly.