图中最小联盟数

IF 0.9 3区 数学 Q2 MATHEMATICS
Davood Bakhshesh, Michael A. Henning
{"title":"图中最小联盟数","authors":"Davood Bakhshesh, Michael A. Henning","doi":"10.1007/s00010-024-01045-5","DOIUrl":null,"url":null,"abstract":"<p>A set <i>S</i> of vertices in a graph <i>G</i> is a dominating set if every vertex of <span>\\(V(G) \\setminus S\\)</span> is adjacent to a vertex in <i>S</i>. A coalition in <i>G</i> consists of two disjoint sets of vertices <i>X</i> and <i>Y</i> of <i>G</i>, neither of which is a dominating set but whose union <span>\\(X \\cup Y\\)</span> is a dominating set of <i>G</i>. Such sets <i>X</i> and <i>Y</i> form a coalition in <i>G</i>. A coalition partition, abbreviated <i>c</i>-partition, in <i>G</i> is a partition <span>\\({\\mathcal {X}} = \\{X_1,\\ldots ,X_k\\}\\)</span> of the vertex set <i>V</i>(<i>G</i>) of <i>G</i> such that for all <span>\\(i \\in [k]\\)</span>, each set <span>\\(X_i \\in {\\mathcal {X}}\\)</span> satisfies one of the following two conditions: (1) <span>\\(X_i\\)</span> is a dominating set of <i>G</i> with a single vertex, or (2) <span>\\(X_i\\)</span> forms a coalition with some other set <span>\\(X_j \\in {\\mathcal {X}}\\)</span>. Let <span>\\({{\\mathcal {A}}} = \\{A_1,\\ldots ,A_r\\}\\)</span> and <span>\\({{\\mathcal {B}}}= \\{B_1,\\ldots , B_s\\}\\)</span> be two partitions of <i>V</i>(<i>G</i>). Partition <span>\\({{\\mathcal {B}}}\\)</span> is a refinement of partition <span>\\({{\\mathcal {A}}}\\)</span> if every set <span>\\(B_i \\in {{\\mathcal {B}}} \\)</span> is either equal to, or a proper subset of, some set <span>\\(A_j \\in {{\\mathcal {A}}}\\)</span>. Further if <span>\\({{\\mathcal {A}}} \\ne {{\\mathcal {B}}}\\)</span>, then <span>\\({{\\mathcal {B}}}\\)</span> is a proper refinement of <span>\\({{\\mathcal {A}}}\\)</span>. Partition <span>\\({{\\mathcal {A}}}\\)</span> is a minimal <i>c</i>-partition if it is not a proper refinement of another <i>c</i>-partition. Haynes et al. [AKCE Int. J. Graphs Combin. 17 (2020), no. 2, 653–659] defined the minmin coalition number <span>\\(c_{\\min }(G)\\)</span> of <i>G</i> to equal the minimum order of a minimal <i>c</i>-partition of <i>G</i>. We show that <span>\\(2 \\le c_{\\min }(G) \\le n\\)</span>, and we characterize graphs <i>G</i> of order <i>n</i> satisfying <span>\\(c_{\\min }(G) = n\\)</span>. A polynomial-time algorithm is given to determine if <span>\\(c_{\\min }(G)=2\\)</span> for a given graph <i>G</i>. A necessary and sufficient condition for a graph <i>G</i> to satisfy <span>\\(c_{\\min }(G) \\ge 3\\)</span> is given, and a characterization of graphs <i>G</i> with minimum degree 2 and <span>\\(c_{\\min }(G)= 4\\)</span> is provided.</p>","PeriodicalId":55611,"journal":{"name":"Aequationes Mathematicae","volume":"22 1","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2024-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The minmin coalition number in graphs\",\"authors\":\"Davood Bakhshesh, Michael A. Henning\",\"doi\":\"10.1007/s00010-024-01045-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>A set <i>S</i> of vertices in a graph <i>G</i> is a dominating set if every vertex of <span>\\\\(V(G) \\\\setminus S\\\\)</span> is adjacent to a vertex in <i>S</i>. A coalition in <i>G</i> consists of two disjoint sets of vertices <i>X</i> and <i>Y</i> of <i>G</i>, neither of which is a dominating set but whose union <span>\\\\(X \\\\cup Y\\\\)</span> is a dominating set of <i>G</i>. Such sets <i>X</i> and <i>Y</i> form a coalition in <i>G</i>. A coalition partition, abbreviated <i>c</i>-partition, in <i>G</i> is a partition <span>\\\\({\\\\mathcal {X}} = \\\\{X_1,\\\\ldots ,X_k\\\\}\\\\)</span> of the vertex set <i>V</i>(<i>G</i>) of <i>G</i> such that for all <span>\\\\(i \\\\in [k]\\\\)</span>, each set <span>\\\\(X_i \\\\in {\\\\mathcal {X}}\\\\)</span> satisfies one of the following two conditions: (1) <span>\\\\(X_i\\\\)</span> is a dominating set of <i>G</i> with a single vertex, or (2) <span>\\\\(X_i\\\\)</span> forms a coalition with some other set <span>\\\\(X_j \\\\in {\\\\mathcal {X}}\\\\)</span>. Let <span>\\\\({{\\\\mathcal {A}}} = \\\\{A_1,\\\\ldots ,A_r\\\\}\\\\)</span> and <span>\\\\({{\\\\mathcal {B}}}= \\\\{B_1,\\\\ldots , B_s\\\\}\\\\)</span> be two partitions of <i>V</i>(<i>G</i>). Partition <span>\\\\({{\\\\mathcal {B}}}\\\\)</span> is a refinement of partition <span>\\\\({{\\\\mathcal {A}}}\\\\)</span> if every set <span>\\\\(B_i \\\\in {{\\\\mathcal {B}}} \\\\)</span> is either equal to, or a proper subset of, some set <span>\\\\(A_j \\\\in {{\\\\mathcal {A}}}\\\\)</span>. Further if <span>\\\\({{\\\\mathcal {A}}} \\\\ne {{\\\\mathcal {B}}}\\\\)</span>, then <span>\\\\({{\\\\mathcal {B}}}\\\\)</span> is a proper refinement of <span>\\\\({{\\\\mathcal {A}}}\\\\)</span>. Partition <span>\\\\({{\\\\mathcal {A}}}\\\\)</span> is a minimal <i>c</i>-partition if it is not a proper refinement of another <i>c</i>-partition. Haynes et al. [AKCE Int. J. Graphs Combin. 17 (2020), no. 2, 653–659] defined the minmin coalition number <span>\\\\(c_{\\\\min }(G)\\\\)</span> of <i>G</i> to equal the minimum order of a minimal <i>c</i>-partition of <i>G</i>. We show that <span>\\\\(2 \\\\le c_{\\\\min }(G) \\\\le n\\\\)</span>, and we characterize graphs <i>G</i> of order <i>n</i> satisfying <span>\\\\(c_{\\\\min }(G) = n\\\\)</span>. A polynomial-time algorithm is given to determine if <span>\\\\(c_{\\\\min }(G)=2\\\\)</span> for a given graph <i>G</i>. A necessary and sufficient condition for a graph <i>G</i> to satisfy <span>\\\\(c_{\\\\min }(G) \\\\ge 3\\\\)</span> is given, and a characterization of graphs <i>G</i> with minimum degree 2 and <span>\\\\(c_{\\\\min }(G)= 4\\\\)</span> is provided.</p>\",\"PeriodicalId\":55611,\"journal\":{\"name\":\"Aequationes Mathematicae\",\"volume\":\"22 1\",\"pages\":\"\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2024-03-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Aequationes Mathematicae\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s00010-024-01045-5\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Aequationes Mathematicae","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00010-024-01045-5","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

如果 \(V(G) \setminus S\) 的每个顶点都与 S 中的顶点相邻,那么图 G 中的顶点集 S 就是一个支配集。G 中的联盟由 G 的顶点 X 和 Y 的两个不相交的集合组成,这两个集合都不是支配集,但是它们的联合 \(X cup Y\) 是 G 的支配集。G 中的联盟分区,简称 c-partition 是 G 的顶点集 V(G) 的分区 \({\mathcal {X}} = \{X_1,\ldots ,X_k\}\) ,对于所有 \(i \in [k]\), 每个集合 \(X_i \in {\mathcal {X}}\) 满足以下两个条件之一:(1) \(X_i\)是 G 的支配集,只有一个顶点;或者 (2) \(X_i\)与其他某个集 \(X_j \in {\mathcal {X}}\)形成联盟。让 \({{\mathcal {A}}= \{A_1,\ldots ,A_r\}\) 和 \({{mathcal {B}}}= \{B_1,\ldots , B_s\}) 是 V(G) 的两个分区。)如果每个集合 ({{/mathcal {B}} 中的 B_i )都等于某个集合 ({{/mathcal {A}} 中的 A_j ),或者是某个集合 ({{/mathcal {A}}} 中的 A_j )的适当子集,那么分区 ({{/mathcal {B}}} )就是分区 ({{/mathcal {A}}} )的细化。此外,如果 \({{\mathcal {A}} \ne {{\mathcal {B}}\), 那么 \({{\mathcal {B}}\) 是 \({{\mathcal {A}}}\) 的适当细化。)如果分区 \({{\mathcal {A}}\) 不是另一个 c 分区的适当细化,那么它就是最小的 c 分区。我们证明了 \(2 \le c_{\min }(G) \le n\), 并且我们描述了满足 \(c_{\min }(G) = n\) 的 n 阶图 G 的特征。给出了图 G 满足 \(c_{\min }(G) \ge 3\) 的必要条件和充分条件,并给出了最小度为 2 且 \(c_{\min }(G)= 4\) 的图 G 的特征。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

The minmin coalition number in graphs

The minmin coalition number in graphs

A set S of vertices in a graph G is a dominating set if every vertex of \(V(G) \setminus S\) is adjacent to a vertex in S. A coalition in G consists of two disjoint sets of vertices X and Y of G, neither of which is a dominating set but whose union \(X \cup Y\) is a dominating set of G. Such sets X and Y form a coalition in G. A coalition partition, abbreviated c-partition, in G is a partition \({\mathcal {X}} = \{X_1,\ldots ,X_k\}\) of the vertex set V(G) of G such that for all \(i \in [k]\), each set \(X_i \in {\mathcal {X}}\) satisfies one of the following two conditions: (1) \(X_i\) is a dominating set of G with a single vertex, or (2) \(X_i\) forms a coalition with some other set \(X_j \in {\mathcal {X}}\). Let \({{\mathcal {A}}} = \{A_1,\ldots ,A_r\}\) and \({{\mathcal {B}}}= \{B_1,\ldots , B_s\}\) be two partitions of V(G). Partition \({{\mathcal {B}}}\) is a refinement of partition \({{\mathcal {A}}}\) if every set \(B_i \in {{\mathcal {B}}} \) is either equal to, or a proper subset of, some set \(A_j \in {{\mathcal {A}}}\). Further if \({{\mathcal {A}}} \ne {{\mathcal {B}}}\), then \({{\mathcal {B}}}\) is a proper refinement of \({{\mathcal {A}}}\). Partition \({{\mathcal {A}}}\) is a minimal c-partition if it is not a proper refinement of another c-partition. Haynes et al. [AKCE Int. J. Graphs Combin. 17 (2020), no. 2, 653–659] defined the minmin coalition number \(c_{\min }(G)\) of G to equal the minimum order of a minimal c-partition of G. We show that \(2 \le c_{\min }(G) \le n\), and we characterize graphs G of order n satisfying \(c_{\min }(G) = n\). A polynomial-time algorithm is given to determine if \(c_{\min }(G)=2\) for a given graph G. A necessary and sufficient condition for a graph G to satisfy \(c_{\min }(G) \ge 3\) is given, and a characterization of graphs G with minimum degree 2 and \(c_{\min }(G)= 4\) is provided.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Aequationes Mathematicae
Aequationes Mathematicae MATHEMATICS, APPLIED-MATHEMATICS
CiteScore
1.70
自引率
12.50%
发文量
62
审稿时长
>12 weeks
期刊介绍: aequationes mathematicae is an international journal of pure and applied mathematics, which emphasizes functional equations, dynamical systems, iteration theory, combinatorics, and geometry. The journal publishes research papers, reports of meetings, and bibliographies. High quality survey articles are an especially welcome feature. In addition, summaries of recent developments and research in the field are published rapidly.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信