{"title":"图中最小联盟数","authors":"Davood Bakhshesh, Michael A. Henning","doi":"10.1007/s00010-024-01045-5","DOIUrl":null,"url":null,"abstract":"<p>A set <i>S</i> of vertices in a graph <i>G</i> is a dominating set if every vertex of <span>\\(V(G) \\setminus S\\)</span> is adjacent to a vertex in <i>S</i>. A coalition in <i>G</i> consists of two disjoint sets of vertices <i>X</i> and <i>Y</i> of <i>G</i>, neither of which is a dominating set but whose union <span>\\(X \\cup Y\\)</span> is a dominating set of <i>G</i>. Such sets <i>X</i> and <i>Y</i> form a coalition in <i>G</i>. A coalition partition, abbreviated <i>c</i>-partition, in <i>G</i> is a partition <span>\\({\\mathcal {X}} = \\{X_1,\\ldots ,X_k\\}\\)</span> of the vertex set <i>V</i>(<i>G</i>) of <i>G</i> such that for all <span>\\(i \\in [k]\\)</span>, each set <span>\\(X_i \\in {\\mathcal {X}}\\)</span> satisfies one of the following two conditions: (1) <span>\\(X_i\\)</span> is a dominating set of <i>G</i> with a single vertex, or (2) <span>\\(X_i\\)</span> forms a coalition with some other set <span>\\(X_j \\in {\\mathcal {X}}\\)</span>. Let <span>\\({{\\mathcal {A}}} = \\{A_1,\\ldots ,A_r\\}\\)</span> and <span>\\({{\\mathcal {B}}}= \\{B_1,\\ldots , B_s\\}\\)</span> be two partitions of <i>V</i>(<i>G</i>). Partition <span>\\({{\\mathcal {B}}}\\)</span> is a refinement of partition <span>\\({{\\mathcal {A}}}\\)</span> if every set <span>\\(B_i \\in {{\\mathcal {B}}} \\)</span> is either equal to, or a proper subset of, some set <span>\\(A_j \\in {{\\mathcal {A}}}\\)</span>. Further if <span>\\({{\\mathcal {A}}} \\ne {{\\mathcal {B}}}\\)</span>, then <span>\\({{\\mathcal {B}}}\\)</span> is a proper refinement of <span>\\({{\\mathcal {A}}}\\)</span>. Partition <span>\\({{\\mathcal {A}}}\\)</span> is a minimal <i>c</i>-partition if it is not a proper refinement of another <i>c</i>-partition. Haynes et al. [AKCE Int. J. Graphs Combin. 17 (2020), no. 2, 653–659] defined the minmin coalition number <span>\\(c_{\\min }(G)\\)</span> of <i>G</i> to equal the minimum order of a minimal <i>c</i>-partition of <i>G</i>. We show that <span>\\(2 \\le c_{\\min }(G) \\le n\\)</span>, and we characterize graphs <i>G</i> of order <i>n</i> satisfying <span>\\(c_{\\min }(G) = n\\)</span>. A polynomial-time algorithm is given to determine if <span>\\(c_{\\min }(G)=2\\)</span> for a given graph <i>G</i>. A necessary and sufficient condition for a graph <i>G</i> to satisfy <span>\\(c_{\\min }(G) \\ge 3\\)</span> is given, and a characterization of graphs <i>G</i> with minimum degree 2 and <span>\\(c_{\\min }(G)= 4\\)</span> is provided.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The minmin coalition number in graphs\",\"authors\":\"Davood Bakhshesh, Michael A. Henning\",\"doi\":\"10.1007/s00010-024-01045-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>A set <i>S</i> of vertices in a graph <i>G</i> is a dominating set if every vertex of <span>\\\\(V(G) \\\\setminus S\\\\)</span> is adjacent to a vertex in <i>S</i>. A coalition in <i>G</i> consists of two disjoint sets of vertices <i>X</i> and <i>Y</i> of <i>G</i>, neither of which is a dominating set but whose union <span>\\\\(X \\\\cup Y\\\\)</span> is a dominating set of <i>G</i>. Such sets <i>X</i> and <i>Y</i> form a coalition in <i>G</i>. A coalition partition, abbreviated <i>c</i>-partition, in <i>G</i> is a partition <span>\\\\({\\\\mathcal {X}} = \\\\{X_1,\\\\ldots ,X_k\\\\}\\\\)</span> of the vertex set <i>V</i>(<i>G</i>) of <i>G</i> such that for all <span>\\\\(i \\\\in [k]\\\\)</span>, each set <span>\\\\(X_i \\\\in {\\\\mathcal {X}}\\\\)</span> satisfies one of the following two conditions: (1) <span>\\\\(X_i\\\\)</span> is a dominating set of <i>G</i> with a single vertex, or (2) <span>\\\\(X_i\\\\)</span> forms a coalition with some other set <span>\\\\(X_j \\\\in {\\\\mathcal {X}}\\\\)</span>. Let <span>\\\\({{\\\\mathcal {A}}} = \\\\{A_1,\\\\ldots ,A_r\\\\}\\\\)</span> and <span>\\\\({{\\\\mathcal {B}}}= \\\\{B_1,\\\\ldots , B_s\\\\}\\\\)</span> be two partitions of <i>V</i>(<i>G</i>). Partition <span>\\\\({{\\\\mathcal {B}}}\\\\)</span> is a refinement of partition <span>\\\\({{\\\\mathcal {A}}}\\\\)</span> if every set <span>\\\\(B_i \\\\in {{\\\\mathcal {B}}} \\\\)</span> is either equal to, or a proper subset of, some set <span>\\\\(A_j \\\\in {{\\\\mathcal {A}}}\\\\)</span>. Further if <span>\\\\({{\\\\mathcal {A}}} \\\\ne {{\\\\mathcal {B}}}\\\\)</span>, then <span>\\\\({{\\\\mathcal {B}}}\\\\)</span> is a proper refinement of <span>\\\\({{\\\\mathcal {A}}}\\\\)</span>. Partition <span>\\\\({{\\\\mathcal {A}}}\\\\)</span> is a minimal <i>c</i>-partition if it is not a proper refinement of another <i>c</i>-partition. Haynes et al. [AKCE Int. J. Graphs Combin. 17 (2020), no. 2, 653–659] defined the minmin coalition number <span>\\\\(c_{\\\\min }(G)\\\\)</span> of <i>G</i> to equal the minimum order of a minimal <i>c</i>-partition of <i>G</i>. We show that <span>\\\\(2 \\\\le c_{\\\\min }(G) \\\\le n\\\\)</span>, and we characterize graphs <i>G</i> of order <i>n</i> satisfying <span>\\\\(c_{\\\\min }(G) = n\\\\)</span>. A polynomial-time algorithm is given to determine if <span>\\\\(c_{\\\\min }(G)=2\\\\)</span> for a given graph <i>G</i>. A necessary and sufficient condition for a graph <i>G</i> to satisfy <span>\\\\(c_{\\\\min }(G) \\\\ge 3\\\\)</span> is given, and a characterization of graphs <i>G</i> with minimum degree 2 and <span>\\\\(c_{\\\\min }(G)= 4\\\\)</span> is provided.</p>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-03-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s00010-024-01045-5\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00010-024-01045-5","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
如果 \(V(G) \setminus S\) 的每个顶点都与 S 中的顶点相邻,那么图 G 中的顶点集 S 就是一个支配集。G 中的联盟由 G 的顶点 X 和 Y 的两个不相交的集合组成,这两个集合都不是支配集,但是它们的联合 \(X cup Y\) 是 G 的支配集。G 中的联盟分区,简称 c-partition 是 G 的顶点集 V(G) 的分区 \({\mathcal {X}} = \{X_1,\ldots ,X_k\}\) ,对于所有 \(i \in [k]\), 每个集合 \(X_i \in {\mathcal {X}}\) 满足以下两个条件之一:(1) \(X_i\)是 G 的支配集,只有一个顶点;或者 (2) \(X_i\)与其他某个集 \(X_j \in {\mathcal {X}}\)形成联盟。让 \({{\mathcal {A}}= \{A_1,\ldots ,A_r\}\) 和 \({{mathcal {B}}}= \{B_1,\ldots , B_s\}) 是 V(G) 的两个分区。)如果每个集合 ({{/mathcal {B}} 中的 B_i )都等于某个集合 ({{/mathcal {A}} 中的 A_j ),或者是某个集合 ({{/mathcal {A}}} 中的 A_j )的适当子集,那么分区 ({{/mathcal {B}}} )就是分区 ({{/mathcal {A}}} )的细化。此外,如果 \({{\mathcal {A}} \ne {{\mathcal {B}}\), 那么 \({{\mathcal {B}}\) 是 \({{\mathcal {A}}}\) 的适当细化。)如果分区 \({{\mathcal {A}}\) 不是另一个 c 分区的适当细化,那么它就是最小的 c 分区。我们证明了 \(2 \le c_{\min }(G) \le n\), 并且我们描述了满足 \(c_{\min }(G) = n\) 的 n 阶图 G 的特征。给出了图 G 满足 \(c_{\min }(G) \ge 3\) 的必要条件和充分条件,并给出了最小度为 2 且 \(c_{\min }(G)= 4\) 的图 G 的特征。
A set S of vertices in a graph G is a dominating set if every vertex of \(V(G) \setminus S\) is adjacent to a vertex in S. A coalition in G consists of two disjoint sets of vertices X and Y of G, neither of which is a dominating set but whose union \(X \cup Y\) is a dominating set of G. Such sets X and Y form a coalition in G. A coalition partition, abbreviated c-partition, in G is a partition \({\mathcal {X}} = \{X_1,\ldots ,X_k\}\) of the vertex set V(G) of G such that for all \(i \in [k]\), each set \(X_i \in {\mathcal {X}}\) satisfies one of the following two conditions: (1) \(X_i\) is a dominating set of G with a single vertex, or (2) \(X_i\) forms a coalition with some other set \(X_j \in {\mathcal {X}}\). Let \({{\mathcal {A}}} = \{A_1,\ldots ,A_r\}\) and \({{\mathcal {B}}}= \{B_1,\ldots , B_s\}\) be two partitions of V(G). Partition \({{\mathcal {B}}}\) is a refinement of partition \({{\mathcal {A}}}\) if every set \(B_i \in {{\mathcal {B}}} \) is either equal to, or a proper subset of, some set \(A_j \in {{\mathcal {A}}}\). Further if \({{\mathcal {A}}} \ne {{\mathcal {B}}}\), then \({{\mathcal {B}}}\) is a proper refinement of \({{\mathcal {A}}}\). Partition \({{\mathcal {A}}}\) is a minimal c-partition if it is not a proper refinement of another c-partition. Haynes et al. [AKCE Int. J. Graphs Combin. 17 (2020), no. 2, 653–659] defined the minmin coalition number \(c_{\min }(G)\) of G to equal the minimum order of a minimal c-partition of G. We show that \(2 \le c_{\min }(G) \le n\), and we characterize graphs G of order n satisfying \(c_{\min }(G) = n\). A polynomial-time algorithm is given to determine if \(c_{\min }(G)=2\) for a given graph G. A necessary and sufficient condition for a graph G to satisfy \(c_{\min }(G) \ge 3\) is given, and a characterization of graphs G with minimum degree 2 and \(c_{\min }(G)= 4\) is provided.