论零星破产下的默顿最优投资组合问题

Yaacov Kopeliovich, Michael Pokojovy
{"title":"论零星破产下的默顿最优投资组合问题","authors":"Yaacov Kopeliovich, Michael Pokojovy","doi":"arxiv-2403.15923","DOIUrl":null,"url":null,"abstract":"Consider a stock market following a geometric Brownian motion and a riskless\nasset continuously compounded at a constant rate. Assuming the stock can go\nbankrupt, i.e., lose all of its value, at some exogenous random time\n(independent of the stock price) modeled as the first arrival time of a\nhomogeneous Poisson process, we study the Merton's optimal portfolio problem\nconsisting of maximizing the expected logarithmic utility of the total wealth\nat a preselected finite maturity time. First, we present a heuristic derivation\nbased on a new type of Hamilton-Jacobi-Bellman equation. Then, we formally\nreduce the problem to a classical controlled Markovian diffusion with a new\ntype of terminal and running costs. A new version of Merton's ratio is\nrigorously derived using Bellman's dynamic programming principle and validated\nwith a suitable type of verification theorem. A real-world example comparing\nthe latter ratio to the classical Merton's ratio is given.","PeriodicalId":501084,"journal":{"name":"arXiv - QuantFin - Mathematical Finance","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-03-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On Merton's Optimal Portfolio Problem under Sporadic Bankruptcy\",\"authors\":\"Yaacov Kopeliovich, Michael Pokojovy\",\"doi\":\"arxiv-2403.15923\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Consider a stock market following a geometric Brownian motion and a riskless\\nasset continuously compounded at a constant rate. Assuming the stock can go\\nbankrupt, i.e., lose all of its value, at some exogenous random time\\n(independent of the stock price) modeled as the first arrival time of a\\nhomogeneous Poisson process, we study the Merton's optimal portfolio problem\\nconsisting of maximizing the expected logarithmic utility of the total wealth\\nat a preselected finite maturity time. First, we present a heuristic derivation\\nbased on a new type of Hamilton-Jacobi-Bellman equation. Then, we formally\\nreduce the problem to a classical controlled Markovian diffusion with a new\\ntype of terminal and running costs. A new version of Merton's ratio is\\nrigorously derived using Bellman's dynamic programming principle and validated\\nwith a suitable type of verification theorem. A real-world example comparing\\nthe latter ratio to the classical Merton's ratio is given.\",\"PeriodicalId\":501084,\"journal\":{\"name\":\"arXiv - QuantFin - Mathematical Finance\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-03-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - QuantFin - Mathematical Finance\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2403.15923\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - QuantFin - Mathematical Finance","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2403.15923","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

考虑一个遵循几何布朗运动的股票市场和一个以恒定利率连续复利的无风险资产。假设股票会在某个外生随机时间(与股价无关)破产,即失去所有价值,该时间被模拟为同质泊松过程的首次到达时间,我们研究默顿最优投资组合问题,该问题包括在预选的有限到期时间内最大化总财富的预期对数效用。首先,我们基于一种新型的汉密尔顿-雅各比-贝尔曼方程提出了一种启发式推导。然后,我们将问题正式简化为具有新型终端成本和运行成本的经典受控马尔可夫扩散。利用贝尔曼动态编程原理,我们从理论上推导出了一个新版本的默顿比率,并用一个合适的验证定理进行了验证。给出了一个实际例子,将后一种比率与经典的默顿比率进行比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On Merton's Optimal Portfolio Problem under Sporadic Bankruptcy
Consider a stock market following a geometric Brownian motion and a riskless asset continuously compounded at a constant rate. Assuming the stock can go bankrupt, i.e., lose all of its value, at some exogenous random time (independent of the stock price) modeled as the first arrival time of a homogeneous Poisson process, we study the Merton's optimal portfolio problem consisting of maximizing the expected logarithmic utility of the total wealth at a preselected finite maturity time. First, we present a heuristic derivation based on a new type of Hamilton-Jacobi-Bellman equation. Then, we formally reduce the problem to a classical controlled Markovian diffusion with a new type of terminal and running costs. A new version of Merton's ratio is rigorously derived using Bellman's dynamic programming principle and validated with a suitable type of verification theorem. A real-world example comparing the latter ratio to the classical Merton's ratio is given.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信