有跳跃的伊托半马勒的马尔可夫投影

Martin Larsson, Shukun Long
{"title":"有跳跃的伊托半马勒的马尔可夫投影","authors":"Martin Larsson, Shukun Long","doi":"arxiv-2403.15980","DOIUrl":null,"url":null,"abstract":"Given a general It\\^o semimartingale, its Markovian projection is an It\\^o\nprocess, with Markovian differential characteristics, that matches the\none-dimensional marginal laws of the original process. We construct Markovian\nprojections for It\\^o semimartingales with jumps, whose flows of\none-dimensional marginal laws are solutions to non-local\nFokker--Planck--Kolmogorov equations (FPKEs). As an application, we show how\nMarkovian projections appear in building calibrated diffusion/jump models with\nboth local and stochastic features.","PeriodicalId":501084,"journal":{"name":"arXiv - QuantFin - Mathematical Finance","volume":"31 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Markovian projections for Itô semimartingales with jumps\",\"authors\":\"Martin Larsson, Shukun Long\",\"doi\":\"arxiv-2403.15980\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Given a general It\\\\^o semimartingale, its Markovian projection is an It\\\\^o\\nprocess, with Markovian differential characteristics, that matches the\\none-dimensional marginal laws of the original process. We construct Markovian\\nprojections for It\\\\^o semimartingales with jumps, whose flows of\\none-dimensional marginal laws are solutions to non-local\\nFokker--Planck--Kolmogorov equations (FPKEs). As an application, we show how\\nMarkovian projections appear in building calibrated diffusion/jump models with\\nboth local and stochastic features.\",\"PeriodicalId\":501084,\"journal\":{\"name\":\"arXiv - QuantFin - Mathematical Finance\",\"volume\":\"31 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-03-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - QuantFin - Mathematical Finance\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2403.15980\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - QuantFin - Mathematical Finance","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2403.15980","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

给定一个一般的It\^o semimartingale,其马尔可夫投影是一个具有马尔可夫微分特征的It\^oprocess,它与原始过程的一维边际规律相匹配。我们为有跳跃的 It\o semimartingales 构建了马尔可夫投影,它的一维边际律流是非局部福克--普朗克--科尔莫哥罗夫方程(FPKEs)的解。作为应用,我们展示了马尔可夫投影如何出现在建立具有局部和随机特征的校准扩散/跳跃模型中。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Markovian projections for Itô semimartingales with jumps
Given a general It\^o semimartingale, its Markovian projection is an It\^o process, with Markovian differential characteristics, that matches the one-dimensional marginal laws of the original process. We construct Markovian projections for It\^o semimartingales with jumps, whose flows of one-dimensional marginal laws are solutions to non-local Fokker--Planck--Kolmogorov equations (FPKEs). As an application, we show how Markovian projections appear in building calibrated diffusion/jump models with both local and stochastic features.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信