复平面中的康托集合的尺度递推稃和维度公式

Pub Date : 2024-03-25 DOI:10.1017/etds.2024.15
CARLOS GUSTAVO T. DE A. MOREIRA, ALEX MAURICIO ZAMUDIO ESPINOSA
{"title":"复平面中的康托集合的尺度递推稃和维度公式","authors":"CARLOS GUSTAVO T. DE A. MOREIRA, ALEX MAURICIO ZAMUDIO ESPINOSA","doi":"10.1017/etds.2024.15","DOIUrl":null,"url":null,"abstract":"We prove a multidimensional conformal version of the scale recurrence lemma of Moreira and Yoccoz [Stable intersections of regular Cantor sets with large Hausdorff dimensions. <jats:italic>Ann. of Math. (2)</jats:italic>154(1) (2001), 45–96] for Cantor sets in the complex plane. We then use this new recurrence lemma, together with Moreira’s ideas in [Geometric properties of images of Cartesian products of regular Cantor sets by differentiable real maps. <jats:italic>Math. Z.</jats:italic>303 (2023), 3], to prove that under the right hypothesis for the Cantor sets <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0143385724000154_inline1.png\" /> <jats:tex-math> $K_1,\\ldots ,K_n$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> and the function <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0143385724000154_inline2.png\" /> <jats:tex-math> $h:\\mathbb {C}^{n}\\to \\mathbb {R}^{l}$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>, the following formula holds: <jats:disp-formula> <jats:alternatives> <jats:graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0143385724000154_eqnu1.png\" /> <jats:tex-math> $$ \\begin{align*}HD(h(K_1\\times K_2 \\times \\cdots\\times K_n))=\\min \\{l,HD(K_1)+\\cdots+HD(K_n)\\}.\\end{align*} $$ </jats:tex-math> </jats:alternatives> </jats:disp-formula>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Scale recurrence lemma and dimension formula for Cantor sets in the complex plane\",\"authors\":\"CARLOS GUSTAVO T. DE A. MOREIRA, ALEX MAURICIO ZAMUDIO ESPINOSA\",\"doi\":\"10.1017/etds.2024.15\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We prove a multidimensional conformal version of the scale recurrence lemma of Moreira and Yoccoz [Stable intersections of regular Cantor sets with large Hausdorff dimensions. <jats:italic>Ann. of Math. (2)</jats:italic>154(1) (2001), 45–96] for Cantor sets in the complex plane. We then use this new recurrence lemma, together with Moreira’s ideas in [Geometric properties of images of Cartesian products of regular Cantor sets by differentiable real maps. <jats:italic>Math. Z.</jats:italic>303 (2023), 3], to prove that under the right hypothesis for the Cantor sets <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0143385724000154_inline1.png\\\" /> <jats:tex-math> $K_1,\\\\ldots ,K_n$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> and the function <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0143385724000154_inline2.png\\\" /> <jats:tex-math> $h:\\\\mathbb {C}^{n}\\\\to \\\\mathbb {R}^{l}$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>, the following formula holds: <jats:disp-formula> <jats:alternatives> <jats:graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0143385724000154_eqnu1.png\\\" /> <jats:tex-math> $$ \\\\begin{align*}HD(h(K_1\\\\times K_2 \\\\times \\\\cdots\\\\times K_n))=\\\\min \\\\{l,HD(K_1)+\\\\cdots+HD(K_n)\\\\}.\\\\end{align*} $$ </jats:tex-math> </jats:alternatives> </jats:disp-formula>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-03-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1017/etds.2024.15\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1017/etds.2024.15","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们证明了莫雷拉和约科兹[大豪斯多夫维度规则康托集合的稳定交集。Ann. of Math. (2)154(1) (2001),45-96],用于复平面中的康托集合。然后,我们利用这一新的递推公设,结合莫雷拉在 [Geometric properties of images of Cartesian products of regular Cantor sets by differentiable real maps.Math.Z.303(2023), 3]中的观点,证明在对康托集 $K_1,\ldots ,K_n$ 和函数 $h:\mathbb {C}^{n}\to \mathbb {R}^{l}$, 下面的公式成立:$$ \begin{align*}HD(h(K_1\times K_2 \times \cdots\times K_n))=\min \l,HD(K_1)+\cdots+HD(K_n)\}.\end{align*}$$
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Scale recurrence lemma and dimension formula for Cantor sets in the complex plane
We prove a multidimensional conformal version of the scale recurrence lemma of Moreira and Yoccoz [Stable intersections of regular Cantor sets with large Hausdorff dimensions. Ann. of Math. (2)154(1) (2001), 45–96] for Cantor sets in the complex plane. We then use this new recurrence lemma, together with Moreira’s ideas in [Geometric properties of images of Cartesian products of regular Cantor sets by differentiable real maps. Math. Z.303 (2023), 3], to prove that under the right hypothesis for the Cantor sets $K_1,\ldots ,K_n$ and the function $h:\mathbb {C}^{n}\to \mathbb {R}^{l}$ , the following formula holds: $$ \begin{align*}HD(h(K_1\times K_2 \times \cdots\times K_n))=\min \{l,HD(K_1)+\cdots+HD(K_n)\}.\end{align*} $$
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信