用于完成少量知识图谱的简单有效的元关系学习

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Shujian Chen, Bin Yang, Chenxing Zhao
{"title":"用于完成少量知识图谱的简单有效的元关系学习","authors":"Shujian Chen, Bin Yang, Chenxing Zhao","doi":"10.1007/s11081-024-09880-w","DOIUrl":null,"url":null,"abstract":"<p>Conventional knowledge graph completion methods are effective for completing knowledge graphs (KGs), but they face significant challenges when dealing with relations with only a limited number of associative triples. To address the issue of incompleteness and long-tail distribution of relations in KGs, few-shot knowledge graph completion emerges as a promising solution. This approach predicts new triplets about a relation by leveraging only a handful of associated triples. Previous methods have focused on aggregating neighbor information and imposing sequential dependency assumptions. However, these methods can be counterproductive when they involve unrelated neighbors and rely on unrealistic assumptions, which hinders the learning of meta-representations. This paper proposes a simple and effective meta relational learning model (SMetaR) for few-shot knowledge graph completion that maintains the complete feature information of few-shot relations through a linear model. This approach effectively learns the meta-representation of few-shot relations and enhances meta-relational learning capabilities. Extensive experiments on two public datasets reveal that the model outperforms existing few-shot knowledge graph completion methods, demonstrating its effectiveness.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Simple and effective meta relational learning for few-shot knowledge graph completion\",\"authors\":\"Shujian Chen, Bin Yang, Chenxing Zhao\",\"doi\":\"10.1007/s11081-024-09880-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Conventional knowledge graph completion methods are effective for completing knowledge graphs (KGs), but they face significant challenges when dealing with relations with only a limited number of associative triples. To address the issue of incompleteness and long-tail distribution of relations in KGs, few-shot knowledge graph completion emerges as a promising solution. This approach predicts new triplets about a relation by leveraging only a handful of associated triples. Previous methods have focused on aggregating neighbor information and imposing sequential dependency assumptions. However, these methods can be counterproductive when they involve unrelated neighbors and rely on unrealistic assumptions, which hinders the learning of meta-representations. This paper proposes a simple and effective meta relational learning model (SMetaR) for few-shot knowledge graph completion that maintains the complete feature information of few-shot relations through a linear model. This approach effectively learns the meta-representation of few-shot relations and enhances meta-relational learning capabilities. Extensive experiments on two public datasets reveal that the model outperforms existing few-shot knowledge graph completion methods, demonstrating its effectiveness.</p>\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-03-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s11081-024-09880-w\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s11081-024-09880-w","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

摘要

传统的知识图谱补全方法对补全知识图谱(KG)很有效,但在处理关联三元组数量有限的关系时,它们面临着巨大的挑战。为了解决知识图谱中关系的不完整性和长尾分布问题,一种很有前途的解决方案--少量知识图谱补全法应运而生。这种方法只利用少量关联三元组来预测关系的新三元组。以前的方法主要集中在聚合邻接信息和强加顺序依赖性假设。然而,当这些方法涉及不相关的邻居并依赖于不切实际的假设时,可能会适得其反,从而阻碍元表征的学习。本文提出了一种简单有效的元关系学习模型(SMetaR),用于完成少点知识图谱,通过线性模型保持少点关系的完整特征信息。这种方法能有效地学习几射关系的元表示,并增强元关系学习能力。在两个公开数据集上的广泛实验表明,该模型优于现有的少量知识图谱补全方法,证明了它的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Simple and effective meta relational learning for few-shot knowledge graph completion

Simple and effective meta relational learning for few-shot knowledge graph completion

Conventional knowledge graph completion methods are effective for completing knowledge graphs (KGs), but they face significant challenges when dealing with relations with only a limited number of associative triples. To address the issue of incompleteness and long-tail distribution of relations in KGs, few-shot knowledge graph completion emerges as a promising solution. This approach predicts new triplets about a relation by leveraging only a handful of associated triples. Previous methods have focused on aggregating neighbor information and imposing sequential dependency assumptions. However, these methods can be counterproductive when they involve unrelated neighbors and rely on unrealistic assumptions, which hinders the learning of meta-representations. This paper proposes a simple and effective meta relational learning model (SMetaR) for few-shot knowledge graph completion that maintains the complete feature information of few-shot relations through a linear model. This approach effectively learns the meta-representation of few-shot relations and enhances meta-relational learning capabilities. Extensive experiments on two public datasets reveal that the model outperforms existing few-shot knowledge graph completion methods, demonstrating its effectiveness.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信