离散时间保险模型

IF 0.2 Q4 MATHEMATICS
E. V. Bulinskaya
{"title":"离散时间保险模型","authors":"E. V. Bulinskaya","doi":"10.3103/s0027132223060025","DOIUrl":null,"url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">Abstract</h3><p>Two discrete-time insurance models are considered. The first model studies nonproportional reinsurance and bank loans. For this model, we establish the optimal control and stability to small fluctuation of parameters and perturbation of random variables distributions describing the model. The second model is dual and the ruin probabilities are compared under assumption that the gains distributions satisfy one of four partial orders.</p>","PeriodicalId":42963,"journal":{"name":"Moscow University Mathematics Bulletin","volume":null,"pages":null},"PeriodicalIF":0.2000,"publicationDate":"2024-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Discrete-Time Insurance Models\",\"authors\":\"E. V. Bulinskaya\",\"doi\":\"10.3103/s0027132223060025\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<h3 data-test=\\\"abstract-sub-heading\\\">Abstract</h3><p>Two discrete-time insurance models are considered. The first model studies nonproportional reinsurance and bank loans. For this model, we establish the optimal control and stability to small fluctuation of parameters and perturbation of random variables distributions describing the model. The second model is dual and the ruin probabilities are compared under assumption that the gains distributions satisfy one of four partial orders.</p>\",\"PeriodicalId\":42963,\"journal\":{\"name\":\"Moscow University Mathematics Bulletin\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.2000,\"publicationDate\":\"2024-03-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Moscow University Mathematics Bulletin\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3103/s0027132223060025\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Moscow University Mathematics Bulletin","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3103/s0027132223060025","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

摘要 本文考虑了两个离散时间保险模型。第一个模型研究非比例再保险和银行贷款。对于该模型,我们建立了最优控制,以及对模型参数的微小波动和随机变量分布扰动的稳定性。第二个模型是二元模型,在假设收益分配满足四个偏序之一的情况下,对毁损概率进行比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Discrete-Time Insurance Models

Abstract

Two discrete-time insurance models are considered. The first model studies nonproportional reinsurance and bank loans. For this model, we establish the optimal control and stability to small fluctuation of parameters and perturbation of random variables distributions describing the model. The second model is dual and the ruin probabilities are compared under assumption that the gains distributions satisfy one of four partial orders.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.60
自引率
25.00%
发文量
13
期刊介绍: Moscow University Mathematics Bulletin  is the journal of scientific publications reflecting the most important areas of mathematical studies at Lomonosov Moscow State University. The journal covers research in theory of functions, functional analysis, algebra, geometry, topology, ordinary and partial differential equations, probability theory, stochastic processes, mathematical statistics, optimal control, number theory, mathematical logic, theory of algorithms, discrete mathematics and computational mathematics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信